Artificial neural network modelling to predict international roughness index of rigid pavements

  • 2 Accesses


This research focuses on predicting the International Roughness Index (IRI) of rigid pavements using the Artificial Neural Network (ANN) model that uses climate and traffic parameters as inputs. A Long-Term Pavement Performance (LTPP) database is used to extract data from wet-freeze, wet no-freeze, dry-freeze, and dry no-freeze climatic zones. The climate and traffic parameters are Mean Annual Air Temperature, Annual Average Freezing Index, Annual Average Maximum and Minimum Humidity, Annual Average Precipitation, Annual Average Daily Traffic, and Annual Average Daily Truck Traffic. The ANN model is trained with 70% of climate, traffic and IRI data, rest 15% data is used to test the model, and remaining 15% data is used to validate the model. The trained and the validated models are compared by calculating Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Among many results, the datasets that are tested with 7–9–9–1 ANN structure with hyperbolic tangent sigmoidal transfer function generated the best prediction models with an RMSE value of 0.01 and MAPE value of 0.01 (1% error) for a rigid pavement located in the wet no-freeze climatic zone.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. [1]

    B. Saghafi., A. Hassani., R. Noori., M. G. Bustos, Artificial Neural Networks and Regression Analysis for Predicting Faulting in Jointed Concrete Pavements Considering Base Condition, Int. J. Pavement Res. Technol. 2 (1) (2009) 20–25.

  2. [2]

    K. Ksaibati., R. McNamara., W. Miley., J. M. Armaghani, Evaluating the ride number as a pavement management roughness index, Florida Department of Transportation, Gainesville, FL, USA, 1998.

  3. [3]

    T. Wang., J. Harvey., J. Lea., C. Kim., Impact of Pavement Roughness on Vehicle Free-Flow Speed, J. Transp. Eng. 140 (9) (2014) 1–11. doi:10.1061/(ASCE)TE.1943–5436.0000689.

  4. [4]

    J. Lin., J.-T. Yau., L.-H. Hsiao., Correlation Analysis Between International Roughness Index (IRI) and Pavement Distress by Neural Network, in: 82nd Transp. Res. Board Annu. Meet., Transportation Research Board, Washington, D.C., USA, 2003.

  5. [5]

    A. Bin., A. Latif., Relationship Between International Roughness Index (IRI) and Present Serviceability Index (PSI), (Master of Science Thesis), Universiti Teknologi Malaysia, Malaysia, 2009.

  6. [6]

    K. Park., N. E. Thomas, K. Wayne Lee, Applicability of the International Roughness Index as a Predictor of Asphalt Pavement Condition, J. Transp. Eng. 133 (12) (2007) 706–709. doi:10.1061/(ASCE)0733–947X(2007)133:12(706).

  7. [7]

    S. A. Arhin, L. N. Williams, A. Ribbiso., M. F. Anderson, Predicting Pavement Condition Index Using International Roughness Index in a Dense Urban Area, J. Civ. Eng. Res. 5 (1) (2015) 10–17. doi:10.5923/j.jce.20150501.02.

  8. [8]

    Y. Du., C. Liu., D. Wu., S. Jiang., Measurement of International Roughness Index by Using Z-Axis Accelerometers and GPS, Math. Probl. Eng. 2014 (2014) 1–10. doi:10.1155/2014/928980.

  9. [9]

    M. W. Sayers, S. M. Karamihas, Interpretation of Road Roughness Profile Data—Final Report, Federal Highway Administration, McLean, VA, USA, 1996.

  10. [10]

    J. Chang., Y. Su., T. Huang., S. Kang., S. Hsieh., Measurement of the International Roughness Index (IRI) using an Autonomous Robot (P3-AT), in: 26th Int. Symp. Autom. Robot. Constr., International Association for Automation and Robotics in Construction, Austin, Texas, USA, 2009, pp. 325–331.

  11. [11]

    F. Bayomy., H. Salem., L. Vosti., Analysis of the Long-Term Pavement Performance Data for the Idaho GPS and SPS Sections, Idaho Transportation Department, Boise, Idaho, USA, 2007.

  12. [12]

    N. J. Santero, A. Horvath., Global Warming Potential of Pavements, Environ. Res. Lett. 4 (3) (2009) 4–11. doi:10.1088/1748–9326/4/3/034011.

  13. [13]

    N. Yadav., A. Yadav., M. Kumar., History of Neural Networks, in: An Introd. to Neural Netw. Methods Differ. Equations., Springer, Dordrecht, 2015: pp. 13–15. doi:10.1007/978–94–017–9816–7.

  14. [14]

    J. A. Bullinaria, Introduction to Neural Networks and Their History, University of Birmingham, UK, 2004. doi:10.1108/eb007822.

  15. [15]

    Y. LeCun., A Theoretical Framework for Back-Propagation, Proc. 1988 Connect. Model. Summer Sch., Carnegie-Mellon University, Pittsburgh, PA, USA, 1988, pp. 21–28. doi:10.1007/978–3–642–35289–8.

  16. [16]

    M. B. Bayrak, E. Teomete., M. Agarwal., Use of Artificial Neural Networks for Predicting Rigid Pavement Roughness, in: Midwest Transp. Consort., Ames, Iowa, USA, 2004: pp. 1–18.

  17. [17]

    J. Yang., J. J. Lu, M. Gunaratne., Application of Neural Network Models for Forecasting of Pavement Crack Index and Pavement Condition Rating, Tallahassee, FL, 2003.

  18. [18]

    J. S. Miller, W. Y. Bellinger, Distress Identification Manual for the Long-Term Pavement Performance Program, McLean, Virginia, USA, 2003.

  19. [19]

    G. E. Elkins, T. Thomson., A. Simpson., B. Ostrom., Long-Term Pavement Performance Information Management System: Pavement Performance Database User Reference Guide, McLean, Virginia, USA, 2012.

  20. [20]

    G. E. Elkins, Ba. Ostrom., B. Visintine., J. Groeger., Long-Term Pavement Performance Ancillary Information Management System (AIMS) Reference Guide, Federal Highway Administration, McLean, VA, USA, 2012.

  21. [21]

    A. N. Hanna, S. D. Tayabji, J. S. Miller, SHRP-LTPP Specific Pavement Studies: Five-Year Report, Washington, D.C., USA, 1994.

  22. [22]

    K. K. Mantravadi, LTPP-Distress Due to Environment, in: MTC Transp. Sch. Conf., Ames, Iowa, USA, 2000: pp. 83–90.

  23. [23]

    M. B. Bayrak, Analysis of Jointed Plain Concrete Pavement Systems with Nondestructive Test Results using Artificial Neural Networks, Iowa State University, 2008.

  24. [24]

    S. K. Suman, S. Sinha., Pavement Condition Forecasting Through Artificial Neural Network Modelling, Int. J. Emerg. Technol. Adv. Eng. 2 (11) (2012) 474–478.

  25. [25]

    D. T. Thube, Artificial Neural Network (ANN) based pavement deterioration models for low volume roads in India, Int. J. Pavement Res. Technol. 5 (2) (2012) 115–120.

  26. [26]

    R.A. El-Hakim, S. El-Badawy, International Roughness Index Prediction for Rigid Pavements: An Artificial Neural Network Application, Adv. Mater. Res. 723 (2013) 854–860. doi:10.4028/

  27. [27]

    Z. Wu., S. Hu., F. Zhou., Expert Systems with Applications Prediction of Stress Intensity Factors in Pavement Cracking with Neural Networks Based on Semi-Analytical FEA, Expert Syst. Appl. 41 (4) (2014) 1021–1030. doi:10.1016/j.eswa.2013.07.063.

  28. [28]

    F. Gu., X. Luo., Y. Zhang., Y. Chen., R. Luo., R. L. Lytton, Prediction of Geogrid-Reinforced Flexible Pavement Performance using Artificial Neural Network Approach, Road Mater. Pavement Des. Des. 19 (5) (2018) 1147–1163. doi:10.1080/14680629.2017.1302357.

  29. [29]

    J. S. Daniel, J. M. Jacobs, E. Douglas., R. B. Mallick, K. Hayhoe., Impact of Climate Change on Pavement Performance: Preliminary Lessons Learned through the Infrastructure and Climate Network (ICNet), in: Int. Symp. Clim. Eff. Pavement Geotech. Infrastruct., ASCE, 2013: pp. 1–9.

  30. [30]

    M. W. Sayers, S. M. Karamihas, The little book of profiling, Basic Inf. about Meas. Interpret. Road Profiles. (1998) 100.

  31. [31]

    R. Machemehl., C. E. Lee, Dynamic Traffic Loading of Pavements, Austin, Texas, USA, 1974.

  32. [32]

    M. Cilimkovic., Neural Networks and Back Propagation Algorithm, Institute of Technology Blanchardstown, Dublin, Ireland, 2010.

  33. [33]

    T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, D. L. Alkon, Biological Cybernetics Accelerating the Convergence of the Back-Propagation Method, Biol. Cybern. 59 (4–5) (1988) 257–263.

  34. [34]

    M. I. Hossain, L.S. P. Gopisetti, M. S. Miah, Prediction of International Roughness Index of Flexible Pavements from Climatic and Traffic Data Using Artificial Neural Network Modeling, in: I.L. Al-Qadi (Ed.), Proc. Int. Conf. Highw. Pavements Airf. Technol. Airf. Highw. Pavements 2017, ASCE, Philadelphia, Pennsylvania, USA, 2017: pp. 256–267. doi:10.1061/9780784410059.

  35. [35]

    C. Chang., C. Liao., Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity, Transfer. 3 (3) (2012) 4–5.

  36. [36]

    Y.-S. Hwang., S.-Y. Bang., Determination of the Weights of an RBF Network using Linear Discriminant Analysis, Pohang University of Science and Technology, Pohang, Korea, 2007.

  37. [37]

    J. Kaur., Techniques Used in Hypothesis Testing in Research Methodology–A Review, 4 (2) (2015) 2013–2016.

  38. [38]

    A. U. Stata, H. M. Park, Comparing Group Means: The T-test and One-way, Indiana University, Bloomington, IN, USA, 2005.

  39. [39]

    R. H. Walpole, R. H. Myers, S. L. Myers, K. Ye., Probability & Statistics for Engineers & Scientists, Eight Edit, Pearson Prentice Hall, NY, USA, 2007. doi:10.2307/2288012.

  40. [40]

    M. I. Hossain, L.S. P. Gopisetti, M. S. Miah, International Roughness Index Prediction of Flexible Pavements using Neural Networks, J. Transp. Eng. Part B Pavement. 145 (1) (2018). doi:10.1061/JPEODX.0000088.

  41. [41]

    T. Shaikhina., N. A. Khovanova, Handling Limited Datasets with Neural Networks in Medical Applications: A Small-Data Approach, Artif. Intell. Med. 75 (2017) 51–63. doi:10.1016/j.artmed.2016.12.003.

  42. [42]

    Alharbi, Fawaz, Predicting pavement performance utilizing artificial neural network (ANN) models, (Graduate Theses and Dissertations), Iowa State University, Ames, IA, USA, 2018.

  43. [43]

    H. Ceylan., O. Kaya., A. R. Tarahomi., K. Gopalakrishnan., S. Kim., D. R. Brill., Developing Rigid Airport Pavement Multiple-Slab Response Models for Top-Down Cracking Mode using Artificial Neural Networks, Civil, Construction and Environmental Engineering Conference Presentations and Proceedings, Iowa State University, Ames, IA, USA, 37, 2017.

  44. [44]

    O. Kaya., N. Garg; H. Ceylan., S. Kim., Development of Artificial Neural Networks Based Predictive Models for Dynamic Modulus of Airfield Pavement Asphalt Mixtures, International Conference on Transportation and Development 2018: Airfield and Highway Pavements, American Society of Civil Engineers, Reston, VA, 2018.

Download references

Author information

Correspondence to Mohammad Hossain.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hossain, M., Gopisetti, L.S.P. & Miah, M.S. Artificial neural network modelling to predict international roughness index of rigid pavements. Int. J. Pavement Res. Technol. (2020).

Download citation


  • Artificial Neural Network (ANN)
  • International Roughness Index (IRI)
  • Long-Term Pavement Performance (LTPP)
  • Rigid pavements
  • Climate
  • Traffic