A Novel Method for Polymer Content Determination in Asphalt Binder and Emulsion

  • R. Hossain
  • N. M. WasiuddinEmail author


Modification of asphalt binder is a must to enhance the performance of asphalt binder. The objectives of this study are to develop an extensional deformation test method using a Sentmanat Extensional Rheometer (SER) fixture inside a Dynamic Shear Rheometer (DSR) and to investigate the relationship between different percentages of latex polymer and force ductility in polymer (latex) modified asphalt emulsion (PMAE) and polymer modified asphalt binder (PMAB). The sample geometry used in this study is 3 mm × 0.72 mm. Total twenty-four samples are tested by the SER where twelve samples are PMAE and twelve samples are PMAB. One neat binder PG 64-22 and one PMAE are used. 2%, 4% and 6% latex are mixed with PG 64-22 by a mechanical mixer and a high shear mixer for making PMAB. PMAEs are collected from the manufacture with 0%, 2.5%, 4% and 5.5% latex in it. Second peak elongation force, F2 is only obtained from the latex modified binders and emulsions. First peak elongation force, F1 has no linear correlation in case of PMAE and PMAB where F2 has a linear correlation with the percent of the polymer in the PMAE and PMAB with R2 values equal to 0.9934 and 0.9535 respectively indicating extensional deformation test with SER is very promising. Additionally, DSR temperature sweep test results and multiple stress creep recovery (MSCR) test results indicate that F2 is a better indicator of polymer content than rutting factor G*/sinδ and non-recoverable creep compliance, Jnr.


Asphalt emulsion Asphalt Binders Percent of polymer Polymer effect Sentmanat Extensional Rheometer Elongation force Dynamic Shear Rheometer Force ductility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study is funded by the Transportation Consortium of South-Central States (Tran-SET) under the project “Development of a Standard Test Method for Characterization of Asphalt Modifiers and Aging-Related Degradation Using an Extensional Rheometer”.


  1. [1]
    G. R. Morrison, J. K. Lee, S. A. M. Hesp, Chlorinated polyolefins for asphalt binder modification, J. Appl. Polym. Sci. 54 (2) (1994) 231–240.CrossRefGoogle Scholar
  2. [2]
    X. Lu, U. Isacsson, Modification of road bitumens with thermoplastic polymers, Polym. Test. 20 (1) (2001) 77–86.CrossRefGoogle Scholar
  3. [3]
    J. B. Johnston, G. N. King, Using Polymer Modified Asphalt Emulsions in Surface Treatments — A Federal Lands Highway Interim Report, Federal Highway Administration, New Jersey Avenue, Washington DC, USA, 2008.Google Scholar
  4. [4]
    R.F.A. Altman, Organic analysis of hevea latex. IX. details of the main fractions, Rubb. Chem. Technol. 20 (1947) 1133–1139.CrossRefGoogle Scholar
  5. [5]
    S. Labi, G. Lamptey, S. H. Kong, Effectiveness of Microsurfacing Treatments, J. Transp. Eng. 133 (5) (2007) 298–307.CrossRefGoogle Scholar
  6. [6]
    S. Labi, K. C. Sinha, Life-Cycle Evaluation of Flexible Pavement Preventive Maintenance, J. Transp. Eng. 131 (10) (2005) 744–751.CrossRefGoogle Scholar
  7. [7]
    T. C. Erwin, Safety Effects of Preventive Maintenance Microsurfacing- A Case Study, (M.S. Thesis), University of Waterloo, Waterloo, Ontario, Canada, 2007.Google Scholar
  8. [8]
    A. Forbes, R. G. Haverkamp, T. Robertson, S. Bearsley, Studies of the Microstructure of Polymer-Modified Bitumen Emulsions Using Confocal Laser Scanning Microscopy, J. Microsc. 204 (3) (2001) 252–257.MathSciNetCrossRefGoogle Scholar
  9. [9]
    K. Takamuraa, W. Heckman, Polymer Network Formation in the Pavement Using SBR Latex Modified Asphalt Emulsions, Stud. Surf. Sci. Catal. 132 (2001) 271–274.CrossRefGoogle Scholar
  10. [10]
    M. A. Shafii, J. Ahmed, E. Shafiie, Physical properties of asphalt emulsion modified with natural rubber latex, World J. Eng. 10 (2) (2013) 159–164.CrossRefGoogle Scholar
  11. [11]
    Y. Chen, G. Tebaldi, R. Roque, G. Lopp, Effects of Polymer Modified Asphalt Emulsion (PMAE) on Pavement Reflective Cracking Performance, 7th RILEM International Conference on cracking in Pavements, Delft, the Netherlands, 4, 2012, pp. 879–888.Google Scholar
  12. [12]
    Q. Zhang, W. Fan, T. Wang, G. Nan, Studies on the temperature performance of SBR modified asphalt emulsion, International Conference on Electric Technology and Civil Engineering (ICETCE), China, 2011, pp.730–733.Google Scholar
  13. [13]
    H. Siswanto, The effect of latex on permanent deformation of asphalt concrete wearing course, Proc. Eng. 171 (2017) 1390–1394.CrossRefGoogle Scholar
  14. [14]
    C. S. Ruggles, The efficient use of environmentally-friendly natural rubber latex in road construction- past, present and the future, Seminar rubber in transport. Breda, The Netherlands, 2004.Google Scholar
  15. [15]
    American Association of State Highway and Transportation Officials, Standard Method of Test for Force Ductility Test of Bituminous Materials. AASHTO T300-11, AASHTO, Washington DC, USA, 2016.Google Scholar
  16. [16]
    M. L. Sentmanat, Miniature universal platform: from extensional melt rheology to solid state deformation behavior, Rheologica Acta 43 (6) (2004) 657The Netherlands669.Google Scholar
  17. [17]
    M. L. Sentmant, Extensional Rheology: An Invaluable Tool for Material Characterization, Xpansion Instrument, LLC, Spicewood, TX, USA, 2012.Google Scholar
  18. [18]
    W. B. O. Mohammed, N. M. Wasiuddin, Development of a Novel and DSR Based Extensional Deformation Test Replacing Force Ductility Test (AASHTO 300), Presentation on TRB’s 97th Annual Meeting, Washington DC, USA, 2018.Google Scholar
  19. [19]
    American Society for Testing and Materials, Standard Test Method for Residue by Evaporation of Emulsified Asphalt. ASTM D6934-08. ASTM International, West Conshohocken, PA, 2016.Google Scholar
  20. [20]
    American Association of State Highway and Transportation Officials, Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO T315-11. AASHTO, Washington DC, USA, 2012.Google Scholar
  21. [21]
    American Association of State Highway and Transportation Officials, Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO T350-11. AASHTO, Washington DC, USA, 2014.Google Scholar
  22. [22]
    E. Shaffie, J. Ahmad, A. K. Arshada, D. Kamarund, H. Awanga, Investigation on rutting performance of nanopolyacrylate and natural rubber latex polymer modified asphalt binder mixes, Jurnal Teknologi (Sci. Eng.) 78 (7-3) (2016) 11–15.Google Scholar
  23. [23]
    W. Saowapark, C. Jubsilp, S. Rimdusit, Natural rubber latex-modified asphalts for pavement application: effects of phosphoric acid and sulphur addition, Road Mater. Pave. Des. 20 (1) (2019) 211–224.CrossRefGoogle Scholar
  24. [24]
    S. A. Tabatabaei, A. Kiasat F. K. Alkouhi, The Effect of Styrene-Butadiene-Rubber (SBR) Polymer Modifier on Properties of Bitumen, International J. Mater. Metallurgical Eng. 7 (10) (2013) 785–788.Google Scholar
  25. [25]
    F. J. Navarro, P. Partal, F. M-Boza, C. Gallegos, Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen, Energy Fuels 19 (5) (2005) 1984–1990.CrossRefGoogle Scholar
  26. [26]
    H. Al-Abdul-Wahhab, G. Al-Amri, Laboratory evaluation of reclaimed rubber asphaltic concrete mixes, J. Mater. Civ. Eng. 3 (3) (1991) 189–203.CrossRefGoogle Scholar
  27. [27]
    A. H. Albayati, H. K. Mohammed, Influence of styrene butadiene rubber on the mechanical properties of asphalt concrete mixtures, Al-Qadisiyah J. Eng. Sci. 4 (3) (2011) 258–274.Google Scholar
  28. [28]
    A. Khadivar, A. Kavussi, Rheological characteristics of SBR and NR polymer modified bitumen emulsions at average pavement temperatures, Constr. Buil. Mater. 47 (2013) 1099–1105.CrossRefGoogle Scholar
  29. [29]
    A. A. Tamimi, I. A. H. A. Zubaidy, A. Upadhye, L. Ali, Evaluation of sustainable asphalt mixture, Study Civ. Eng. Archit. 3 (2014) 41–47.Google Scholar
  30. [30]
    J. C. Chen, M. C. Lio, M. S. Shian, Asphalt Modified by Styrene-Butadiene-Styrene Triblock Copolymer: Morphology and Model, J. Mater. Civ. Eng. 14 (3) (2002) 224–229.CrossRefGoogle Scholar
  31. [31]
    P. Shirodkar, Y. Mehta, A. Nolan, K. Dahm, R. Dusseau, L. McCarthy, Characterization of creep and recovery curve of polymer modified binder, Constr. Buil. Mater. 34 (2012) 504–511.CrossRefGoogle Scholar

Copyright information

© Chinese Society of Pavement Engineering. Production and hosting by Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringLouisiana Tech UniversityRustonUSA

Personalised recommendations