Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR)

  • Hyun Hwan Kim
  • Moon-Sup Lee
  • Soon-Jae LeeEmail author


The study presents an experimental evaluation of performance properties of rubberized polymer modified asphalt (PMA) binders to compare two types of ground tire rubber (GTR): normal and treated. Styrene-butadiene-styrene (SBS) modified asphalt binder (PG 76-22) is used as a base PMA binder to produce rubberized PMA binder. The rubberized PMA binders were artificially short-term and long-term aged using the rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were carried out on the binders through the rotational viscometer (RV), the dynamic shear rheometer (DSR), and the bending beam rheometer (BBR). Additionally, the multiple stress creep recovery (MSCR) test was accomplished to investigate the rutting properties. In general, the results of this study indicated that (1) the viscosity properties are found to be dependent on GTR types and amounts, as expected, (2) the rutting properties of PMA binders are expected to be improved through the use of GTR, (3) the addition of GTR is observed to be effective in improving the cracking performances of PMA binder, and (4) in general, the PMA binders with treated GTR showed better performance properties, compared to the PMA binders with normal GTR.


Rubberized PMA binder Viscosity Rutting Fatigue cracking MSCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Mazumder, H. Kim, S. J. Lee, Performance properties of polymer modified asphalt binders containing wax additives, Inter. J. Pave. Res. Tech. 9 (2) (2016) 128–139.CrossRefGoogle Scholar
  2. [2]
    P. Lavin, Asphalt pavements: A practical guide to design, production and maintenance for engineers and architects, CRC Press, New York, NY, 2014.Google Scholar
  3. [3]
    A. Adedeji, T. Grünfelder, F.S. Bates, C.W. Macosko, Stroup-Gardiner, M. and Newcomb, D.E., Asphalt modified by SBS triblock copolymer: structures and properties, Polymer Eng. Sci. 36 (12) (1996) 1707–1723.CrossRefGoogle Scholar
  4. [4]
    Y. Becker, M.P. Mendez, Y. Rodriguez, Polymer modified asphalt, In Vision tecnologica, 2001.Google Scholar
  5. [5]
    R. Roque, B. Birgisson, C. Drakos, G. Sholar, Guidelines for use of modified binders. No. UF Project No. 4910-4504-964-12. University of Florida, Gainesville, FL, 2005.Google Scholar
  6. [6]
    H. H. Kim, K. D. Jeong, M. S. Lee, S. J. Lee, Performance properties of CRM binders with wax warm additives, Constr. Buil. Mater. 66 (2014) 356–360.CrossRefGoogle Scholar
  7. [7]
    H. H. Kim, S. J. Lee, Effect of crumb rubber on viscosity of rubberized asphalt binders containing wax additives, Constr. Buil. Mater. 95 (2015) 65–73CrossRefGoogle Scholar
  8. [8]
    H. H. Kim, M. Mazumder, S. J. Lee, Recycling of aged asphalt binders with wax warm additives, Road Mater. Pave. Des. 19 (5) (2018) 1203–1215.CrossRefGoogle Scholar
  9. [9]
    B. Huang, L. Mohammad, P. Graves, C. Abadie, Louisiana experience with crumb rubber-modified hot-mix asphalt pavement, Transp. Res. Rec. (1789) (2002) 1–13.CrossRefGoogle Scholar
  10. [10]
    G. B. Way, OGFC Meets CRM-Where the Rubber Meets the Rubber-12 Years of the durable success. The Asphalt Conference, Atlanta, Georgia, 1998.Google Scholar
  11. [11]
    S. K. Palit, K. Sudhakar Reddy, B. B. Pandey, Laboratory evaluation of crumb rubber modified asphalt mixes, J. Mater. Civ. Eng. 16 (1) (2004) 45–53.CrossRefGoogle Scholar
  12. [12]
    J. Shen, Amirkhanian, S.N. The influence of crumb rubber modifier (CRM) microstructures on the high temperature properties of CRM binders, Inter. J.Pave. Eng. 6 (4) (2005) 265–271.CrossRefGoogle Scholar
  13. [13]
    S. J. Lee, Characterization of recycled aged CRM binders, Dissertation, Clemson University, 2007.Google Scholar
  14. [14]
    B. E. Ruth, R. Roque, Crumb rubber modifier (CRM) in asphalt pavements. In Transportation Congress, Civil Engineers—Key to the World’s Infrastructure, ASCE (1–2) (1995) 768–785.Google Scholar
  15. [15]
    F. Xiao, P.W. Zhao, S.N. Amirkhanian, Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives, Constr. Buil. Mater. 23 (10) (2009) 3144–3151.CrossRefGoogle Scholar
  16. [16]
    M.F. Azizian, P.O. Nelson, Thayumanavan, P. and Williamson, K.J., Environmental impact of highway construction and repair materials on surface and ground waters: Case study: crumb rubber asphalt concrete, Waste Manage. 23(8) (2003) 719–728.CrossRefGoogle Scholar
  17. [17]
    L. Xiang, J. Cheng, G. Que, Microstructure and performance of crumb rubber modified asphalt, Constr. Buil. Mater. 23 (12) (2009) 3586–3590.CrossRefGoogle Scholar
  18. [18]
    H. H. Kim, S. J. Lee, Evaluation of rubber influence on cracking resistance of crumb rubber modified binders with wax additives, Canadian J. Civ. Eng. 43 (4) (2016) 326–333.CrossRefGoogle Scholar
  19. [19]
    H. H. Kim, M. Mazumder, S. J. Lee, M. S. Lee, Characterization of recycled crumb rubber modified binders containing wax warm additives. J. Traffic Transp. Eng. (English Edition) 5 (3) (2018) 197–206.Google Scholar
  20. [20]
    H. H. Kim, M. Mazumder, M. S. Lee, S. J. Lee, Effect of blending time on viscosity of rubberized binders with wax additives, Inter. J. Pave. Res. Tech. 11(6) (2018)., 655–665.CrossRefGoogle Scholar
  21. [21]
    H.U. Bahia, Critical evaluation of asphalt modification using strategic highway research program concepts, Transp. Res. Rec. (1488) (1995) 82–88.Google Scholar
  22. [22]
    Y. Yan, R. Roque, D. Hernando, S. Chun, Cracking performance characterisation of asphalt mixtures containing reclaimed asphalt pavement with hybrid binder, Road Mater. Pave. Des. 20 (2) (2019) 347–366.CrossRefGoogle Scholar
  23. [23]
    R. Siddique, T.R. Naik, Properties of concrete containing scrap-tire rubber-an overview, Waste Manage. 24 (6) (2004) 563–569.CrossRefGoogle Scholar
  24. [24]
    A. Behnood, Rheological properties of asphalt binders: An analysis of the Multiple Stress Creep Recovery test, (Doctoral dissertation), Purdue University, 2016.Google Scholar
  25. [25]
    J. Zhang, L. F. Walubita, A. N. Faruk, P. Karki, G. S. Simate, Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance-A laboratory study, Constr. Buil. Mater. 94 (2015) 218–227CrossRefGoogle Scholar
  26. [26]
    N. Tabatabaee, H. Tabatabaee, Multiple stress creep and recovery and time sweep fatigue tests: Crumb rubber modified binder and mixture performance, Transp. Res. Rec. (2180) (2010) 67–74.CrossRefGoogle Scholar
  27. [27]
    A. Behnood, A. Shah, R. S. McDaniel, M. Beeson, J. Olek, High-temperature properties of asphalt binders: Comparison of multiple stress creep recovery and performance grading systems, Transp. Res. Rec. 2574 (2016) 131–143.CrossRefGoogle Scholar
  28. [28]
    H. Soenen, T. Blomberg, T. Pellinen, O. V. Laukkanen, The multiple stress creep-recovery test: a detailed analysis of repeatability and reproducibility, Road Mater. Pave. Des. 14 (sup1) (2013) 2–11.CrossRefGoogle Scholar
  29. [29]
    A.V. Kataware, D. Singh, A study on rutting susceptibility of asphalt binders at high stresses using MSCR test, Innovative Infrastructure Solutions, 2 (1) (2017) 4.Google Scholar
  30. [30]
    A. W. Ali, H. H. Kim, M. Mazumder, M. S. Lee, S. J. Lee, Multiple Stress Creep Recovery (MSCR) characterization of polymer modified asphalt binder containing wax additives, Inter. J. Pave. Res. Tech. (2018).
  31. [31]
    C. M. Johnson, H. Wen, H. U. Bahia, Practical application of viscoelastic continuum damage theory to asphalt binder fatigue characterization, J. Assoc. Asph. Paving Tech. 78 (2009) 597–638.Google Scholar
  32. [32]
    Y. Yan, D. Hernando, R. Roque, Fracture tolerance of asphalt binder at intermediate temperatures. Journal of Materials in Civil Engineering, 29 (9) (2017) 04017108.CrossRefGoogle Scholar
  33. [33]
    C. M. Johnson, Estimating asphalt binder fatigue resistance using an accelerated test method, (Doctoral dissertation), Univ. of WisconsinMadison, Madison, WI, 2010.Google Scholar
  34. [34]
    H. H. Kim, M. Mazumder, A. Torres, S. J. Lee, M. S. Lee, Characterization of CRM Binders with Wax Additives Using an Atomic Force Microscopy (AFM) and an Optical Microscopy, Adv. Civ. Eng. Mater. 6 (1) (2017) 504–525.Google Scholar
  35. [35]
    R.L. Ott, M. Longnecker, An introduction to statistical methods and data analysis. ISBN: 0-534-25122-6. 5th ed. Duxbury Press: Garland, Texas, USA., 2001.Google Scholar
  36. [36]
    Asphalt Institute. Implementation of the multiple stress creep recovery test and specification, Lexington, KY., 2010.Google Scholar

Copyright information

© Higher Education Press Limited Company 2019

Authors and Affiliations

  1. 1.Texas State UniversitySan MarcosUSA
  2. 2.Korea Institute of Civil Engineering and Building TechnologyGyeonggiSouth Korea

Personalised recommendations