Advertisement

A review on the mechanisms involved in reclaimed asphalt pavement

  • Lekhaz Devulapalli
  • Saravanan KothandaramanEmail author
  • Goutham Sarang
Article
  • 2 Downloads

Abstract

Reclaimed Asphalt Pavement (RAP) is a widely used recycled material in pavement construction. Whereas the integration of RAP into asphalt mixtures is a complex subject and need to understand every aspect that entailed in the mix design. The aim of this review paper is to provide comprehensive knowledge about the developments and challenges of the RAP in the asphalt mixtures, along with the mechanisms involved. The blending process and rejuvenator are two key factors that govern RAP content, and this can even surge up to 100% in the asphalt mixtures. The blending between the RAP and the virgin materials is very crucial in the context of performance and durability of RAP mixtures. While rejuvenator is an additive which may act as a catalyst and enhance the aged RAP binder properties. A detailed description of distinct types of the rejuvenators and their performances are discussed in this paper. Several aspects of the RAP mixtures including mix design, constituent materials, performance, RAP with polymer modified asphalt binder, as well as environmental benefits are highlighted. This study gives information to the researchers, engineers, and designers about the RAP technology.

Keywords

Reclaimed asphalt pavement Blending process Rejuvenators Recycling of asphalt pavement RAP mix design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    M. Mangum, Asphalt Paving Sector Presentation. In Health Effects of Occupational Exposure to Emissions from Asphalt/Bitumen Symposium. Dresden, Germany, 2006.Google Scholar
  2. [2]
    European Asphalt Pavement Association. Asphalt in figure. EAPA, Brussels, Belgium, 2011.Google Scholar
  3. [3]
    EAPA NAPA. The Asphalt Paving Industry: A Global Perspective, 3rd Edition, Production, Use, Properties, and Occupational Exposure Reduction Technologies and Trends, Lanham, MD. U.S.A., 2011.Google Scholar
  4. [4]
    Asphalt Institute, European Bitumen Association — Eurobitume. Production, Chemistry, Use, Specification and Occupational Exposure, The Bitumen Industry, A Global Perspective 1st ed, Lexington, KY, 2008.Google Scholar
  5. [5]
    J. R. Bukowski, Guidelines for the Design of Superpave Mixtures Containing Reclaimed Asphalt Pavement (RAP). In Memorandum, ETG Meeting, FHWA Superpave Mixtures Expert Task Group, San Antonio, TX, 1997.Google Scholar
  6. [6]
    S. Saride, D. Avirneni, S. C. P. Javvadi, Utilization of reclaimed asphalt pavements in Indian low-volume roads, J. Mater. Civ. Eng. 28 (2) (2015) 04015107.CrossRefGoogle Scholar
  7. [7]
    C. T. Chiu, T. H. Hsu, W.F. Yang, Life cycle assessment on using recycled materials for rehabilitating asphalt pavements, Res. Conserv. Recycling. 52 (2008) 545–556.CrossRefGoogle Scholar
  8. [8]
    B. Huang, G. Li, D. Vukosavljevic, X. Shu, B. Egan, Laboratory investigation of mixing hot-mix asphalt with reclaimed asphalt pavement, Transp. Res. Rec. 1929 (2005). 37–45.CrossRefGoogle Scholar
  9. [9]
    T. B. Moghaddam, H. Baaj, The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review, Constr. Build. Mater. 114 (2016) 805–816.CrossRefGoogle Scholar
  10. [10]
    A. Copeland, Reclaimed asphalt pavement in asphalt mixtures: State of the practice. Federal Highway Administration, Washington, DC, 2011.Google Scholar
  11. [11]
    T. W. Kennedy, W. O. Tam, M. Solaimanian, Effect of reclaimed asphalt pavement on binder properties using the superpave system, Work 1250 (1) (1998).Google Scholar
  12. [12]
    P. S. Kandhal, F. Parker, R. B. Mallick, Aggregate tests for hot-mix asphalt: state of the practice. Transportation Research Board, National Research Council, Washington, D.C., U.S.A., 1997.Google Scholar
  13. [13]
    J. C. Petersen, Chemical composition of asphalt as related to asphalt durability: State of the art, Transp. Res. Rec. 999 (1984) 13–30.Google Scholar
  14. [14]
    J. J. Yang, P. T. A. Lakte, S. H. Kim, Use of conditional inference trees for evaluating the effect of reclaimed asphalt pavement content and binder grade on the dynamic modulus of asphalt concrete mixtures, Inter. J. Pave. Res. Tech. (2018).Google Scholar
  15. [15]
    R. McDaniel, R. M. Anderson, Recommended use of reclaimed asphalt pavement in the superpave mix design method: guidelines. No. 253. Transp. Res. Brd., National Research Council, Washington, D.C., U.S.A., 2001.Google Scholar
  16. [16]
    R. West, A. Kvasnak, N. Tran, B. Powell, P. Turner, Testing of moderate and high reclaimed asphalt pavement content mixes: laboratory and accelerated field performance testing at the national center for asphalt technology test track, Transp. Res. Rec. 2126 (2009) 100–108.CrossRefGoogle Scholar
  17. [17]
    R. S. McDaniel, H. Soleymani, R. M. Anderson, P. Turner, R. Peterson, Recommended use of reclaimed asphalt pavement in the Superpave mix design method. NCHRP Web document, 30 2000.Google Scholar
  18. [18]
    K. R. Hansen, A. Copeland, Annual asphalt pavement industry survey on recycled materials and warm-mix asphalt usage. No. IS-138, Lanham, MD. U.S.A, 2013 2009–2012.Google Scholar
  19. [19]
    K. R. Hansen, A. Copeland, Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2014. No. IS-138. Lanham, MD. U.S.A., 2015.Google Scholar
  20. [20]
    R. West, A. Copeland, High RAP asphalt pavements: Japan practice: Lessons learned. NAPA Rep. No. IS, 139, Lanham, MD. U.S.A 2015.Google Scholar
  21. [21]
    A. Copeland, Reclaimed asphalt pavement in asphalt mixtures: State of the practice, Federal Highway Administration, Washington DC., USA., 2011.Google Scholar
  22. [22]
    I. L. Al-Qadi, M. Elseifi, S. H. Carpenter, Reclaimed asphalt pavement: a literature review, Illinois Centre of Transportation, Springfield, IL, 2007.Google Scholar
  23. [23]
    R. Kuehl, J. Korzilius, M. Michael, Synopsis of Recycled Asphalt Pavement (RAP) Material. National Technical Information Services, Springfield, Virginia, USA., 22161 2016.Google Scholar
  24. [24]
    T. A. Pradyumna, A. Mittal, P. K. Jain, Characterization of Reclaimed Asphalt Pavement (RAP) for Use in Bituminous Road Construction. Proc. Soc. Behav. Sci. 104 (2013) 1149–1157.CrossRefGoogle Scholar
  25. [25]
    P. Shirodkar, Y. Mehta, A. Nolan, K. Sonpal, A. Norton, C. Tomlinson, R. Sauber, A study to determine the degree of partial blending of reclaimed asphalt pavement (RAP) binder for high RAP hot mix asphalt, Constr. Build. Mater. 25 (1), (2011) 150–155.CrossRefGoogle Scholar
  26. [26]
    European Asphalt Pavement Association, Asphalt in Figures 2014. Brysseli: European Asphalt Pavement Association, Brussels, Belgium, 2016.Google Scholar
  27. [27]
    J. S. Daniel, A. Lachance, Mechanistic and volumetric properties of asphalt mixtures with recycled asphalt pavement, Transp. Res. Rec. 1929 (1) (2005) 28–36.CrossRefGoogle Scholar
  28. [28]
    M. Zaumanis, R. Mallick, R. Frank, Evaluation of Rejuvenator’s Effectiveness with Conventional Mix Testing for 100% Reclaimed Asphalt Pavement Mixtures, Transp. Res. Rec. 2370 (2013) 17–25.CrossRefGoogle Scholar
  29. [29]
    Y. Huang, R. Bird, B. Allen, A life cycle assessment tool for recycling in pavement construction. In SETAC Europe 13th LCA Case Study Symposium with Focus on the Building and Construction Sector, Stuttgart, Germany, 2006.Google Scholar
  30. [30]
    E. V. D. Kerkhof, Warm waste asphalt recycling in belgium: 30 years of experience and full confidence in the future. In 5th Euroasphalt and Eurobitume congress, Istanbul, Turkey, 2012 13–15.Google Scholar
  31. [31]
    Indian Roads Congress, Recommended practice for recycling of bituminous pavements. IRC:120–2015. New Delhi, India, 2015.Google Scholar
  32. [32]
    B. Hofko, A. Cannone Falchetto, J. Grenfell, L. Huber, X. Lu, L. Porot, Z. You, Effect of short-term ageing temperature on bitumen properties, Road Mater. Pave. Des. 18 (sup2) (2017) 108–117.CrossRefGoogle Scholar
  33. [33]
    H. Sivilevičius, J. Bražiūnas, O. Prentkovskis, Technologies and Principles of Hot Recycling and Investigation of Preheated Reclaimed Asphalt Pavement Batching Process in an Asphalt Mixing Plant, Appl. Sci. 7 (11) (2017) 1104.CrossRefGoogle Scholar
  34. [34]
    M. Zaumanis, R. B. Mallick, R. Frank, 100% recycled hot mix asphalt: A review and analysis. Resources, Conserv. Recycling 92 (2014) 230–245.CrossRefGoogle Scholar
  35. [35]
    R. Hassan, Feasibility of using high RAP contents in hot mix asphalt. In 13th International Flexible Pavements Conference. Australian Asphalt Pavement Association, Queensland, Australia, 2009.Google Scholar
  36. [36]
    I. L. Howard, AL. Cooley Jr, J.D. Doyle, Laboratory testing and economic analysis of high rap warm mixed asphalt. Jackson: Mississippi Department of Transportation. FWHA/MS-DOT-RD-09-200., Mississippi, U.S.A., 2009.Google Scholar
  37. [37]
    Transportation Research Board (TRB), Mix Design Practices for Warm Mix Asphalt. NCHRP 09-43. Washington, D.C., U.S.A., 2009.Google Scholar
  38. [38]
    M. Zaumanis, M. C. Cavalli, L. D. Poulikakos, Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder, Inter. J. Pave. Eng. (2018) 1–9.Google Scholar
  39. [39]
    M. Solaimanian, E. Savory, Variability analysis of hot-mix asphalt concrete containing high percentage of reclaimed asphalt pavement, Transp. Res. Rec. (1543) (1996) 89–96.CrossRefGoogle Scholar
  40. [40]
    D. Kim, A. Norouzi, S. Kass, T. Liske, Y.R. Kim, Mechanistic performance evaluation of pavement sections containing RAP and WMA additives in Manitoba, Constr. Build. Mater. 133 (2017) 39–50.CrossRefGoogle Scholar
  41. [41]
    J. Navaro, D. Bruneau, I. Drouadaine, J. Colin, A. Dony, J. Cournet Observation and evaluation of the degree of blending of reclaimed asphalt concretes using microscopy image analysis, Constr. Build. Mater. 37 (2012) 135–143.CrossRefGoogle Scholar
  42. [42]
    P. Kriz, D. L. Grant, B. A. Veloza, M. J. Gale, A. G. Blahey, J. H. Brownie, R. D. Shirts, S. Maccarrone, Blending and diffusion of reclaimed asphalt pavement and virgin asphalt binders, Road Mater. Pave. Des. 15 (2014) 78–112.CrossRefGoogle Scholar
  43. [43]
    K. Zhang, B. Muhunthan, Effects of production stages on blending and mechanical properties of asphalt mixtures with reclaimed asphalt pavement, Constr. Build. Mater. 149 (2017) 679–689.CrossRefGoogle Scholar
  44. [44]
    J. W. Oliver, The influence of the binder in RAP on recycled asphalt properties, Road Mater. Pave. Des. 2 (3) (2001) 311–325.CrossRefGoogle Scholar
  45. [45]
    J.E. Stephens, J. M. Mahoney, C. Dippold, Determination of the PG Binder Grade to Use in a RAP Mix. No. JHR 00-278. Connecticut Transportation Institute, University of Connecticut, School of Engineering, 2001.Google Scholar
  46. [46]
    American Association of State Highway and Transportation Officials, Standard specification for Superpave volumetric mix design. M. 323-13. 2013. AASHTO, Washington, D.C., U.S.A., 2013Google Scholar
  47. [47]
    A. Liphardt, P. Radziszewski, J. Król, Binder blending estimation method in hot mix asphalt with reclaimed asphalt, Proc. Eng. 111 (2015) 502–509.CrossRefGoogle Scholar
  48. [48]
    S. H. Carpenter, J. R. Wolosick, Modifier influence in the charaterization of hot-mix recycled material, Transp. Res. Rec. 177 (1980) 15–22.Google Scholar
  49. [49]
    M. C. Cavalli, M. N. Partl, L. D. Poulikakos, Measuring the binder film residues on black rock in mixtures with high amounts of reclaimed asphalt, J. Cleaner Prod. 149 (2017) 665–672.CrossRefGoogle Scholar
  50. [50]
    B.F. Bowers, J. Moore, B. Huang, X. Shu, Blending efficiency of Reclaimed Asphalt Pavement: An approach utilizing rheological properties and molecular weight distributions. Fuel 135 (2014) 63–68.CrossRefGoogle Scholar
  51. [51]
    J. S. Chen, C. H. Wang, C. C. Huang, Engineering Properties of bituminous mixtures blended with second Reclaimed Asphalt Pavements (R2AP), Road Mater. Pave. Des. 10, (2009) 129–149.Google Scholar
  52. [52]
    M. Zaumanis, R. B. Mallick, Review of very high-content reclaimed asphalt use in plant-produced pavements: state of the art, Inter. J. Pave. Eng. 16 (1) (2015) 39–55.CrossRefGoogle Scholar
  53. [53]
    F. Y. Rad, N. R. Sefidmazgi, H. Bahia, Application of diffusion mechanism: Degree of blending between fresh and recycled asphalt pavement binder in dynamic shear rheometer, Transp. Res. Rec. 2444 (1) (2014) 71–77.CrossRefGoogle Scholar
  54. [54]
    H. V. Nguyen, Effects of mixing procedures and rap sizes on stiffness distribution of hot recycled asphalt mixtures, Constr. Build. Mater. 47 (2013) 728–742.CrossRefGoogle Scholar
  55. [55]
    I. Menapace, L. G. Cucalon, F. Kaseer, E. Arámbula-Mercado, A. E. Martin, E. Masad, G. King, Effect of recycling agents in recycled asphalt binders observed with microstructural and rheological tests, Constr. Build. Mater. 158 (2018) 61–74.CrossRefGoogle Scholar
  56. [56]
    M. Mohajeri, A. A. A. Molenaar, M. F. C. Van de Ven, Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography, Road Mater. Pave. Des. 15 (2) (2014) 372–384.CrossRefGoogle Scholar
  57. [57]
    S. Bressi, M. C. Cavalli, M. N. Partl, G. Tebaldi, A. G. Dumont, L. D. Poulikakos, Particle clustering phenomena in hot asphalt mixtures with high content of reclaimed asphalt pavements, Constr. Build. Mater. 100 (2015) 207–217.CrossRefGoogle Scholar
  58. [58]
    A. Stimilli, A. Virgili, F. Canestrari, New method to estimate the “re-activated” binder amount in recycled hot-mix asphalt, Road Mater. Pave. Des. 16 (sup1) (2015) 442–459.CrossRefGoogle Scholar
  59. [59]
    E. Rinaldini, P. Schuetz, M. N. Partl, G. Tebaldi, L. D. Poulikakos, Investigating the blending of reclaimed asphalt with virgin materials using rheology, electron microscopy and computer tomography. Composites Part B: Eng. 67 (2014) 579–587.CrossRefGoogle Scholar
  60. [60]
    S. Yu, S. Shen, X. Zhou, X. Li, Effect of Partial Blending on High-Content RAP Mix Design and Mixture Properties. Transp. Res. Rec. 2672 (28) (2018) 79–87.CrossRefGoogle Scholar
  61. [61]
    L. Noferini, Investigation on performances of asphalt mixtures made with reclaimed asphalt pavement: effects of interaction between virgin and rap bitumen. Inter. J. Pave. Res. Tech. 10 (4) (2017) 322–332.CrossRefGoogle Scholar
  62. [62]
    R.C. West, J.R. Willis, M.O. Marasteanu, Improved mix design, evaluation, and materials management practices for hot mix asphalt with high reclaimed asphalt pavement content, Transp. Res. Brd. NCHRP Report No. 752, Washington, D.C., U.S.A., 2013.Google Scholar
  63. [63]
    R. McDaniel, H. Soleymani, A. Shah, Use of reclaimed asphalt pavement (RAP) under Superpave specifications: A regional pooled fund project., FHWA?IN?JTRP-2002/6. West Lafayette, IN, U.S.A., 2002.Google Scholar
  64. [64]
    European Standard, Bituminous Mixtures-Material Specifications-Part, 8. C. 13108–8. Brussels, Belgium, 2005.Google Scholar
  65. [65]
    E. Arámbula-Mercado, F. Kaseer, A. E. Martin, F. Yin, L. G. Cucalon, Evaluation of recycling agent dosage selection and incorporation methods for asphalt mixtures with high RAP and R AS contents, Constr. Build. Mater. 158 (2018) 432–442.CrossRefGoogle Scholar
  66. [66]
    S. Mangiafico, H. Di Benedetto, C. Sauzéat, F. Olard, S. Pouget, L. Planque, Relations between Linear ViscoElastic Behaviour of Bituminous Mixtures Containing Reclaimed Asphalt Pavement and Colloidal Structure of Corresponding Binder Blends, Proc. Eng. 143 (2016) 138–145.CrossRefGoogle Scholar
  67. [67]
    R. L. Terrel, J. A. Epps, Using additives and modifiers in hot mix asphalt. Section A (No. QIP-114A)., Lanham, Maryland, U.S.A., 1989Google Scholar
  68. [68]
    R.B. Mallick, R. Frank, 100% Hot Mix Asphalt Recycling: Challenges and Benefits, Transp. Res. Proc. 14 (1989) (2016) 3493–3502.Google Scholar
  69. [69]
    T. Blomberg, M. Makowska, T. Pellinen, Laboratory Simulation of Bitumen Aging and Rejuvenation to Mimic Multiple Cycles of Reuse, Transp. Res. Proc. 14 (2016) 694–703.CrossRefGoogle Scholar
  70. [70]
    R. Karlsson, U. Isacsson, Application of FTIR-ATR to characterization of bitumen rejuvenator diffusion, J. Mater. Civ. Eng. 15 (2) (2003) 157–165.CrossRefGoogle Scholar
  71. [71]
    J. Lin, J. Hong, C. Huang, J. Liu, S. Wu, Effectiveness of rejuvenator seal materials on performance of asphalt pavement, Constr. Build. Mater. 55 (2014) 63–68.CrossRefGoogle Scholar
  72. [72]
    H. Nabizadeh, H.F. Haghshenas, Y.R. Kim, F.T.S. Aragão, Effects of rejuvenators on high-RAP mixtures based on laboratory tests of asphalt concrete (AC) mixtures and fine aggregate matrix (FAM) mixtures, Constr. Build. Mater. 152 (2017) 65–73.CrossRefGoogle Scholar
  73. [73]
    M. Zaumanis, R. B. Mallick, R. Frank, Determining optimum rejuvenator dose for asphalt recycling based on Superpave performance grade specifications, Constr. Build. Mater. 69 (2014) 159–166.CrossRefGoogle Scholar
  74. [74]
    S. Im, P. Karki, F. Zhou, Development of new mix design method for asphalt mixtures containing RAP and rejuvenators, Constr. Build. Mater. 115 (2016) 727–734.CrossRefGoogle Scholar
  75. [75]
    P. Cong, H. Hao, Y. Zhang, W. Luo, D. Yao, Investigation of diffusion of rejuvenator in aged asphalt, Inter. J. Pave. Res. Tech. 9 (2016) 280–288.CrossRefGoogle Scholar
  76. [76]
    J. Shen, S. Amirkhanian, B. Tang, Effects of rejuvenator on performance-based properties of rejuvenated asphalt binder and mixtures, Constr. Build. Mater. 21 (5) (2007) 958–964.CrossRefGoogle Scholar
  77. [77]
    P. S. Lin, T. L. Wu, C. W. Chang, B. Y. Chou, Effects of recycling agents on aged asphalt binders and reclaimed asphalt concrete, Mater. Struc. 44 (5) (2011) 911–921.CrossRefGoogle Scholar
  78. [78]
    M. Zaumanis, R. B. Mallick, R. Frank, Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100% recycled asphalt, Mater. Struc. 48 (8) (2015) 2475–2488.CrossRefGoogle Scholar
  79. [79]
    N. Pratik, C. S. Umesh, A rheological study on aged binder rejuvenated with Pongamia oil and Composite castor oil, Inter. J. Pave. Eng. 18 (7) (2015) 595–607.Google Scholar
  80. [80]
    P. A. Dokandari, D. Kaya, B. Sengoz, A. Topal, Implementing Waste Oils with Reclaimed Asphalt Pavement, Proc. 2nd World Congress on Civil, Structural, and Environmental Engineering (CSEE’17), 2017 2371–5294.Google Scholar
  81. [81]
    M. Chen, B. Leng, S. Wu, Y. Sang, Physical, chemical and rheological properties of waste edible vegetable oil rejuvenated asphalt binders, Constr. Buil. Mater. 66 (2014) 286–298.CrossRefGoogle Scholar
  82. [82]
    H. Asli, E. Ahmadinia, M. Zargar, M.R. Karim, Investigation on physical properties of waste cooking oil-Rejuvenated bitumen binder, Constr. Buil. Mater. 37 (2012) 398–405.CrossRefGoogle Scholar
  83. [83]
    A. Dony, J. Colin, D. Bruneau, I. Drouadaine, J. Navaro, Reclaimed asphalt concretes with high recycling rates: changes in reclaimed binder properties according to rejuvenating agent. Constr. Build. Mater 41 (2013) 175.CrossRefGoogle Scholar
  84. [84]
    Cargill. Rejuvenation of aged bitumen: Increasing RAP and RAS content while maintaining performance. (2017). https://www.cargill.com/bioindustrial/anova/asphalt-rejuvenators, (accessed 15 April 2018).
  85. [85]
    ArrMaz. Asphalt rejuvenators for Reclaimed Asphalt Pavements. (2017). https://arrmaz.com/products/road-science-asphalt-technology/asphalt-additives/asphalt-rejuvenators-recycled-asphalt-pavement/, (accessed 15 April 2018).
  86. [86]
    N. H. Tran, A. Taylor, R. Willis, Effect of rejuvenator on performance properties of HMA mixtures with high RAP and RAS contents. NCAT Report 12-05, Auburn University, 2012.Google Scholar
  87. [87]
    W.S. Mogawer, A. Booshehrian, S. Vahidi, A.J. Austerman, Evaluating the effect of rejuvenators on the degree of blending and performance of high RAP, RAS, and RAP/RAS mixtures, Road Mater. Pave. Des. 14 (2013) 193–213.CrossRefGoogle Scholar
  88. [88]
    R. B. Mallick, M. Tao, K. A. O’Sullivan, R. Frank, Use of 100% Reclaimed Asphalt Pavement (RAP) Material in Asphalt Pavement Construction. In Proceeding of the 89th Conference of International Society of Asphalt Pavement. Nagoya, Japan, 2009.Google Scholar
  89. [89]
    J. F. Su, E. Schlangen, Y. Y. Wang, Investigation the self-healing mechanism of aged bitumen using microcapsules containing rejuvenator, Constr. Build. Mater. 85 (2015) 49–56.CrossRefGoogle Scholar
  90. [90]
    A. S. Noureldin, L. E. Wood, Rejuvenator diffusion in binder film for hot-mix recycled asphalt pavement, Transp. Res. Rec. 1115 (1987).Google Scholar
  91. [91]
    J. Sullivan, Pavement recycling executive summary and report. FHWA-SA-95-060. Federal Highway Administration, Washington D.C., U.S.A., 1996.Google Scholar
  92. [92]
    Indian Roads Congress, Tentative specifications for bituminous concrete. IRC: 105-1988., New Delhi, India, 1998.Google Scholar
  93. [93]
    Asphalt Institute, Superpave Mix Design. Superpave Series No. 2 (SP-02). Asphalt Institute, Lexington, KY., 2001.Google Scholar
  94. [94]
    R. Izaks, V. Haritonovs, I. Klasa, M. Zaumanis, Hot Mix Asphalt with High RAP Content., Proc. Eng. 114 (2015) 676–684.CrossRefGoogle Scholar
  95. [95]
    R. S. McDaniel, A. Shah, G. Huber, Investigation of low- and high-temperature properties of plant-produced RAP mixtures. No. FHWA-HRT-11-058. West Lafayette, IN, U.S.A., 2012.Google Scholar
  96. [96]
    H. R. Paul, Evaluation of recycled projects for performance. Asph. Paving Tech. 65 (1996) 231–254.Google Scholar
  97. [97]
    L. Mohammad, M. Y. Abu-Farsakh, Z. Wu, C. Abadie, Louisiana experience with foamed recycled asphalt pavement base materials, Transp. Res. Rec. 1832 (2003) 17–24CrossRefGoogle Scholar
  98. [98]
    P. S. Kandhal, F. Parker, R. B. Mallick, Aggregate tests for hot-mix asphalt: state of the practice. Transp. Res. Brd. National Research Council. No. 479. Washington D.C., U.S.A., 1997.Google Scholar
  99. [99]
    S. Zaghloul, T. Holland, Comparative analysis of long-term field performance of recycled asphalt in California environmental zones, Transp. Res. Rec. 2084 (2008) 83–99.CrossRefGoogle Scholar
  100. [100]
    R. West, A. Kvasnak, N. Tran, B. Powell, P. Turner, Testing of moderate and high reclaimed asphalt pavement content mixes: laboratory and accelerated field performance testing at the national center for asphalt technology test track, Transp. Res. Rec. 2126 (2009) 100–108.CrossRefGoogle Scholar
  101. [101]
    T. B. J. Coenen, A. Golroo A review on automated pavement distress detection methods, Cogent Eng. 4 (1) (2017).Google Scholar
  102. [102]
    A. Stimilli, A. Virgili, F. Giuliani, F. Canestrari, Mix design validation through performance-related analysis of in plant asphalt mixtures containing high RAP content, Inter. J. Pave. Res. Tech. 10 (1) (2017) 23–37.CrossRefGoogle Scholar
  103. [103]
    T. A. Pradyumna, P. K. Jain, Use of RAP Stabilized by Hot Mix Recycling Agents in Bituminous Road Construction, Transp. Res. Proc. 17 (2016) 460–467.CrossRefGoogle Scholar
  104. [104]
    A. Hussain, Q. Yanjun, Effect of Reclaimed Asphalt Pavement on the properties of asphalt binders, Proc. Eng. 54 (2013) 840–850.CrossRefGoogle Scholar
  105. [105]
    K. Aravind, A. Das, Pavement design with central plant hotmix recycled asphalt mixes, Constr. Build. Mater. 21 (5), (2007) 928–936.CrossRefGoogle Scholar
  106. [106]
    C. Yan, W. Huang, Q. Lv, Study on bond properties between RAP aggregates and virgin asphalt using Binder Bond Strength test and Fourier Transform Infrared spectroscopy, Constr. Build. Mater. 124 (2016) 1–10.CrossRefGoogle Scholar
  107. [107]
    S. Im, F. Zhou, R. Lee, T. Scullion, Impacts of rejuvenators on performance and engineering properties of asphalt mixtures containing recycled materials, Constr. Build. Mater. 53 (2014) 596–603.CrossRefGoogle Scholar
  108. [108]
    O. Reyes-Ortiz, E. Berardinelli, a. E. Alvarez, J. S. Carvajal-Muñoz, L. G. Fuentes, Evaluation of Hot Mix Asphalt Mixtures with Replacement of Aggregates by Reclaimed Asphalt Pavement (RAP) Material. Procedia — Social and Behavioral Sciences, 53 (2012) 379–388.CrossRefGoogle Scholar
  109. [109]
    S. Coffey, E. DuBois, Y. Mehta, A. Nolan, C. Purdy, Determining the impact of degree of blending and quality of reclaimed asphalt pavement on predicted pavement performance using pavement ME design, Constr. Build. Mater. 48 (2013) 473–478.CrossRefGoogle Scholar
  110. [110]
    R. Ghabchi, D. Singh, M. Zaman, Evaluation of moisture susceptibility of asphalt mixes containing RAP and different types of aggregates and asphalt binders using the surface free energy method, Constr. Build. Mater. 73 (2014) 479–489.CrossRefGoogle Scholar
  111. [111]
    P. Sebaaly, G. Bazi, E. Hitti, D. Weitzel, S. Bemanian, (2004). Performance of cold in-place recycling in Nevada, Transp. Res. Rec. 1896 162–169.Google Scholar
  112. [112]
    L.D. Poulikakos, S. dos Santos, M. Bueno, S. Kuentzel, M. Hugener, M.N. Partl, Influence of short and long-term aging on chemical, microstructural and macro-mechanical properties of recycled asphalt mixtures, Constr. Build. Mater. 51 (2014) 414–423.CrossRefGoogle Scholar
  113. [113]
    A. Behroozikhah, S.H. Morafa, S. Aflaki, Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy, Constr. Build. Mater. 141 (2017) 526–532.CrossRefGoogle Scholar
  114. [114]
    J. Jiang, F. Ni, J. Zheng, Y. Han, X. Zhao, Improving the high-temperature performance of cold recycled mixtures by polymer-modified asphalt emulsion, Inter. J. Pave. Eng. (2018) 1–8.Google Scholar
  115. [115]
    C. Giavarini, “Polymer-modified bitumen.” Developments in Petroleum Science, Elsevier. 40 (1994) 381–400.Google Scholar
  116. [116]
    Z. Zhou, X. Gu, F. Ni, Y. Jiang, Cracking Performance of Laboratory-Produced Polymer Modified Asphalt Mixture Containing Reclaimed Asphalt Pavement Material: a Multiscale Analysis. No. 18-02599. Washington D.C., U.S.A., 2018.Google Scholar
  117. [117]
    S. Kim, G. A. Sholar, T. Byron, J. Kim, Performance of polymer-modified asphalt mixture with reclaimed asphalt pavement, Transp. Res. Rec. 2126 (1) (2009) 109–114.CrossRefGoogle Scholar
  118. [118]
    F. Xiao, S. N. Amirkhanian, J. Shen, B. Putman, Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures, Constr. Build. Mater. 23 (2) (2009) 1028–1034.CrossRefGoogle Scholar
  119. [119]
    D. Singh, D. Sawant, F. Xiao, High and intermediate temperature performance evaluation of crumb rubber modified binders with RAP. Transportation Geotechnics, 10 (2017) 13–21.CrossRefGoogle Scholar
  120. [120]
    A. Bernier, A. Zofka, I. Yut, Laboratory evaluation of rutting susceptibility of polymer-modified asphalt mixtures containing recycled pavements, Constr. Build. Mater. 31 (2012) 58–66.CrossRefGoogle Scholar
  121. [121]
    D. Singh, D. Sawant, Understanding effects of RAP on rheological performance and chemical composition of SBS modified binder using series of laboratory tests, Inter. J. Pave. Res. Tech. 9 (3) (2016) 178–189.CrossRefGoogle Scholar
  122. [122]
    J. Shen, S. Amirkhanian, S. J. Lee, B. Putman, Recycling of Laboratory-Prepared Reclaimed Asphalt Pavement Mixtures Containing Crumb Rubber-Modified Binders in Hot-Mix Asphalt, Transp. Res. Rec. 1962 (1) (2006) 71–78.CrossRefGoogle Scholar
  123. [123]
    D. Singh, Girimath, S. Influence of RAP sources and proportions on fracture and low temperature cracking performance of polymer modified binder, Constr. Build. Mater. 120 (2016) 10–18.CrossRefGoogle Scholar
  124. [124]
    M. Zaman, M. Z. Rahaman, Z. Hossain, Nonrecoverable Compliance and Recovery Behavior of Polymer-Modified and Reclaimed Asphalt Pavement (RAP)-Modified Binders in Arkansas, J. Test. Eval. 46 (6) (2018).Google Scholar
  125. [125]
    N. Lee, C. P. Chou, K. Y. Chen, Benefits in energy savings and CO2 reduction by using reclaimed asphalt pavement, In Transportation Research Board 91st annual meeting, 2012.Google Scholar
  126. [126]
    Q. Aurangzeb, I.L. Al-Qadi, H. Ozer, R. Yang, Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, Conserv. Recycling 83 (2014) 77–86.CrossRefGoogle Scholar
  127. [127]
    M. Waymen, Y. Andersson-skold, R. Bergmen, Y. Huang, T. Parry, J. Raaberg, Life cycle assessment of Reclaimed Asphalt Pavement. European Commission, 2012.Google Scholar
  128. [128]
    A. Farina, M.C. Zanetti, E. Santagata, G.A. Blengini, Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement. Resources, Conserv. Recycling 117 (2017) 204–212.CrossRefGoogle Scholar
  129. [129]
    A. Jamshidi, M.O. Hamzah, Z. Shahadan, Selection of Reclaimed Asphalt Pavement sources and contents for asphalt mix production based on asphalt binder rheological properties, fuel requirements and greenhouse gas emissions, J. Cleaner Prod. 23 (1) (2012) 20–27.CrossRefGoogle Scholar
  130. [130]
    H. M. Silva, J. R. Oliveira, C. M. Jesus, Are totally recycled hot mix asphalts a sustainable alternative for road paving? Resources, Conserv. Recycling 60 (2012) 38–48.CrossRefGoogle Scholar
  131. [131]
    R. Vidal, E. Moliner, G. Martínez, M. C. Rubio, Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement, Resources, Conserv. Recycling 74 (2013) 101–114.CrossRefGoogle Scholar

Copyright information

© Higher Education Press Limited Company 2019

Authors and Affiliations

  • Lekhaz Devulapalli
    • 1
  • Saravanan Kothandaraman
    • 1
    Email author
  • Goutham Sarang
    • 1
  1. 1.School of Mechanical and Building SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations