Comparison of rut performance of asphalt concrete and binder containing warm mix additives

  • Ivan Anwar SyedEmail author
  • Umme A. Mannan
  • Rafiqul A. Tarefder


In this research, rutting resistance of asphalt concrete and asphalt binders containing different warm mix additives are evaluated at high temperature. Frequency Sweep, Multiple Stress-Creep Recovery (MSCR), and Zero Shear Viscosity (ZSV) tests were conducted on extracted binders using a Dynamic Shear Rheometer device at 50°C temperature to determine binder rut parameters. In this study, five widely used rheological rut parameters are examined: the Superpave® rutting specification parameter, Shenoy parameter, Zero Shear Viscosity, Non-Recoverable Creep Compliance, and Percent Recovery. By employing these specific approaches, the rutting resistance of modified asphalt binders were determined and then normalized to the values of the control sample in order to calculate the rutting resistance improvement ratio. In addition, rheological properties were then correlated with Hamburg Wheel-Tracking Device (HWTD) results performed at 50°C. Results show that the mixture incorporated with Cecabase® additive and polymer modification demonstrated significant enhancement in rutting resistance. Also, based on the tested rheological parameters, it was observed that non-recoverable compliance value obtained from MSCR testing exhibited superior correlation with HWTD (R2 = 0.96) compared to the other parameters.


Hamburg wheel-tracking device (HWTD) binder rut parameters frequency sweep multiple stress-creep recovery (MSCR) zero shear viscosity (ZSV) warm mix additives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.N. Nagabhushana, D. Tiwari, P. K. Jain, Rutting in flexible pavement: an approach of evaluation with accelerated pavement testing facility, Proc. Soc. Behav. Sci. 104 (2013) 149–157.CrossRefGoogle Scholar
  2. [2]
    R. A. Tarefder, M. Zaman, Evaluation of the rutting potential of hot mix asphalt using the asphalt pavement analyzer. No. ORA 125-6660. Oklahoma, U.S.A., 2002.Google Scholar
  3. [3]
    B. Gómez-Meijide, I. Pérez, Binder-aggregate adhesion and resistance to permanent deformation of bitumen-emulsion-stabilized materials made with construction and demolition waste aggregates, J. Cleaner Prod. 129 (2016) 125–133.CrossRefGoogle Scholar
  4. [4]
    C. Ling, A. Arshadi, H. U. Bahia, Importance of binder modification type and aggregate structure on rutting resistance of asphalt mixtures using image-based multi-scale modelling, Rd. Mater. Pave. Des. 18 (4) (2017) 785–799.CrossRefGoogle Scholar
  5. [5]
    E. Remišová, V. Zatkalíková, Evaluation of bituminous binder in relation to resistance to permanent deformation. Procedia Engineering 153. XXV Polish — Russian — Slovak Seminar Theoretical Foundation of Civ. Eng., 2016 584–589.Google Scholar
  6. [6]
    F. Morea, J. O. Agnusdei, R. Zerbino, Comparison of methods for measuring zero shear viscosity in asphalts, Mater. Struct. 43 (4) (2010) 499–507.CrossRefGoogle Scholar
  7. [7]
    H. M. R. D. Silva, J. R. M. Oliveira, J. Peralta, S. E. Zoorob, Optimization of warm mix asphalts using different blends of binders and synthetic paraffin wax contents, Constr. Build. Mater. 24 (9) (2010) 1621–1631.CrossRefGoogle Scholar
  8. [8]
    H. Ziari, R. Babagoli, A. Akbari, Investigation of fatigue and rutting performance of hot mix asphalt mixtures prepared by bentonite-modified bitumen, Rd. Mater. Pave. Des. 16 (1) (2015) 101–118CrossRefGoogle Scholar
  9. [9]
    F. Yin, E. Arámbula-Mercado, D. Newcomb, Effect of laboratory foamer on asphalt foaming characteristics and foamed mixture properties, Inter. J. Pave. Eng. 18 (4) (2017) 358–366.CrossRefGoogle Scholar
  10. [10]
    J. A. D’Angelo, E. E. Harm, J. C. Bartoszek, G. L. Baumgardner, M. R. Corrigan, J. E. Cowsert, B. D. Prowell, Warm-mix asphalt: European practice. No. FHWA-PL-08-007. Washington, D.C., U.S.A., 2008.Google Scholar
  11. [11]
    Z. Leng, I. L. Al-Qadi, Comparative life cycle assessment between warm SMA and conventional SMA. Research Rep. ICT-11-090. Illinois Center for Transp., Rantoul, IL., 2011.Google Scholar
  12. [12]
    B. Neitzke, B. Wasill. Placement of Warm Mix Asphalt on the East Entrance Road of Yellowstone National Park. Federal Highway Administration, Western Federal Lands Highway Division, Technology Deployment Program, 2009.Google Scholar
  13. [13]
    L. G. Cucalon, F. Yin, A. E. Martin, E. Arambula, C. Estakhri, E. S. Park, Evaluation of moisture susceptibility minimization strategies for warm-mix asphalt: Case study, J. Mater. Civ. Eng. 28 (2) (2015) 05015002.CrossRefGoogle Scholar
  14. [14]
    B. Prowell, G. Hurley, E. Crews, Field performance of warm-mix asphalt at national center for asphalt technology test track. Transp. Res. Rec. 1998 (2007) 96–102.CrossRefGoogle Scholar
  15. [15]
    F. Xiao, S. Amirkhanian, B. Putman, Evaluation of rutting resistance in warm-mix asphalts containing moist aggregate. Transp. Res. Rec. 2180 (2010) 75–84.CrossRefGoogle Scholar
  16. [16]
    W. Mogawer, A. Austerman, H. U. Bahia, Evaluating the effect of warm-mix asphalt technologies on moisture characteristics of asphalt binders and mixtures. Transp. Res. Rec. 2209 (2011) 52–60.CrossRefGoogle Scholar
  17. [17]
    American Association of State Highway and Transportation Officials, Standard Method of Test for Sampling Bituminous Paving Mixture. T168-11. AASHTO, Washington, DC., 2011.Google Scholar
  18. [18]
    M. Irfan, A. S. Waraich, S. Ahmed, Y. Ali, Characterization of various plant-produced asphalt concrete mixtures using dynamic modulus test, Adv. Mater. Sci. Eng. 2016 (2016).Google Scholar
  19. [19]
    A. Stimilli, A. Virgili, F. Giuliani, F. Canestrari, Mix design validation through performance-related analysis of in plant asphalt mixtures containing high RAP content, Selected Contributions to the RILEM SIB2015 Symposium, Inter. J. Pave. Res. Tech. 10 (1) (2017) 23–37.CrossRefGoogle Scholar
  20. [20]
    AASHTO T164-14 Standard Test Methods for Quantitative Extraction of Bitumen from Bituminous Paving Mixtures. AASHTO, Washington, D.C., U.S.A., 2014.Google Scholar
  21. [21]
    M. T. Rahman, T. J. Burchett, N. Kargah-Ostadi, and Sassin, J. M. Long-Term pavement performance: Preliminary analysis of constructed warm-mix asphalt overlay projects. In Transp. Res. Brd. 95th Annual Meeting. No. 16-5768, Washington, D.C., U.S.A., 2016.Google Scholar
  22. [22]
    M. F. C. Van de Ven, K. J. Jenkins, J. L. M. Voskuilen, R. Van Den Beemt, Development of (half-) warm foamed bitumen mixes: state of the art, Inter. J. Pave. Eng. 8 (2) (2007) 163–175.CrossRefGoogle Scholar
  23. [23]
    Ó. Kristjánsdóttir, S. Muench, L. Michael, G. Burke, Assessing potential for warm-mix asphalt technology adoption, Transp. Res. Rec. 2040 (2007) 91–99.CrossRefGoogle Scholar
  24. [24]
    S. D. Capitão, L. G. Picado-Santps, F. Martinho, Pavement engineering materials: Review on the use of warm-mix asphalt, Constr. Build. Mater. 36 (2012) (2012) 1016–1024.CrossRefGoogle Scholar
  25. [25]
    M. H. Rashwan, Characterization of warm mix asphalt (WMA) performance in different asphalt applications, (Doctoral dissertation), Iowa State University, U.S.A., 2012.CrossRefGoogle Scholar
  26. [26]
    American Association of State Highway and Transportation Officials, Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). AASHTO T324-14. AASHTO, Washington, DC. (2014).Google Scholar
  27. [27]
    S. Schram, R. Williams, A. Buss, Reporting results from the hamburg wheel tracking device, Transp. Res. Rec. 2446 (2014) 89–98.CrossRefGoogle Scholar
  28. [28]
    American Association of State Highway and Transportation Officials, Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). AASHTO T315-11. AASHTO, Washington, DC., 2011.Google Scholar
  29. [29]
    F. Guiliani, F. Merusi, I. Antunes, Creep Flow Behavior of Asphalt Rubber Binder — The Zero Shear Viscosity Analysis, Proc. Asph. Rubber Italia., 2006.Google Scholar
  30. [30]
    Federal Highway Administration, The multiple stress creep recovery (MSCR) procedure. FHWA-HIF-11-038. Office of Pavement Technology. U.S. Department of Transportation, Washington, D.C., U.S.A., 2011.Google Scholar
  31. [31]
    American Association of State Highway and Transportation Officials, Standard practice for multiple stress creep recovery test of asphalt binder using a dynamic shear rheometer. AASHTO TP-70. AASHTO, Washington, DC., 2010.Google Scholar
  32. [32]
    B. Hill, Performance evaluation of warm mix asphalt mixtures incorporating reclaimed asphalt pavement, (Doctoral dissertation), University of Illinois, Urbana-Champaign, 2011.Google Scholar

Copyright information

© Higher Education Press Limited Company 2019

Authors and Affiliations

  • Ivan Anwar Syed
    • 1
    Email author
  • Umme A. Mannan
    • 2
  • Rafiqul A. Tarefder
    • 3
  1. 1.New Mexico Department of TransportationCivil Engineer-in-TrainingSanta FeUSA
  2. 2.Florida Department of TransportationPavement Condition ConsultantGainesvilleUSA
  3. 3.Civil Engineering DepartmentUniversity of New Mexico. 1 University of New MexicoAlbuquerqueUSA

Personalised recommendations