Vectorized Clay Nanoparticles in Therapy and Diagnosis

  • Goeun Choi
  • Huiyan Piao
  • Sairan Eom
  • Jin-Ho ChoyEmail author


Over the past several decades, clay minerals have been applied in various bio-fields such as drug and drug additives, animal medicine and feed additives, cosmetics, biosensors, etc. Among various research areas, however, the medical application of clay minerals is an emerging field not only in academia but also in industry. In particular, cationic and anionic clays have long been considered as drug delivery vehicles for developing advanced drug delivery systems (DDSs), which is the most important of the various research fields including new drugs and medicines, in vitro and in vivo diagnostics, implants, biocompatible materials, etc., in nanomedicine. These applications are obviously related to global issues such as improvements in welfare and quality of life with life expectancy increasing. Many scientists, therefore, in various disciplines, such as clay mineralogy, material chemistry, molecular biology, pharmacology, and medical science, have been endeavoring to find solutions to such global issues. One of the strategic approaches is probably to explore new drugs possessing intrinsic therapeutic effects or to develop advanced materials with theranostic functions. With this is mind, discussions of examples of cationic and anionic clays with bio- and medical applications based on nanomedicine are relevant. In this tutorial review, nanomedicine based on clay minerals are described in terms of synthetic strategies of clay nanohybrids, in vitro and in vivo toxicity, biocompatibility, oral and injectable medications, diagnostics, theranosis, etc.


Anionic Clay Biocompatibility Cationic Clay Diagnostics Drug Delivery Inorganic Nanovehicle Layered Double Hydroxides Medicinal Application Toxicity 



This work was supported by the National Research Foundation of Korea (NRF) Grants funded by the Korean Government (MSIP) (No. 2017R1A6A3A11034149, No. 2016R1D1A1A02937308, and No. 2017K2A9A2A10013104).


  1. Alkilani, A.Z., McCrudden, M.T., & Donnelly, R.F. (2015). Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 7, 438–470.CrossRefGoogle Scholar
  2. Baek, M., Lee, J.A., & Choi, S.J. (2012). Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Molecular & Cellular Toxicology, 8, 95–101.CrossRefGoogle Scholar
  3. Bergaya, F. and Lagaly, G. (2006). General introduction: clays, clay minerals and clay science. In: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, & G. Lagaly, eds.), pp. 1–18. Developments in Clay Science, 1, Elsevier, Amsterdam.Google Scholar
  4. Biswick, T., Park, D.H., Shul, Y.G., & Choy, J.H. (2009). P-coumaric acid–zinc basic salt nanohybrid for controlled release and sustained antioxidant activity. Journal of Physics and Chemistry of Solids, 71, 647–649.CrossRefGoogle Scholar
  5. Bull, R.M.R., Marklan, C., Williams, G.R., & O’Hare, D. (2011). Hydroxy double salts as versatile storage and delivery matrices. Journal of Materials Chemistry, 21, 1822–1828.CrossRefGoogle Scholar
  6. Bushong, S.C. and Clarke, G. (2014). Magnetic resonance imaging: physical and biological principles. Elsevier Health Sciences, Amsterdam, pp. 2–16.Google Scholar
  7. Cheng, Y., Zhao, L., Li, Y., and Xu, T. (2011). Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chemical Society Reviews, 40, 2673–2703.CrossRefGoogle Scholar
  8. Choi, G., Eom, S., Vinu, A., & Choy, J.H. (2018). 2D nanostructured metal hydroxides with gene delivery and theranostic functions; a comprehensive review. The Chemical Record, 18, 1–22.CrossRefGoogle Scholar
  9. Choi, G., Jeon, I.R., Piao, H., & Choy, J.H. (2017). Highly condensed boron cage cluster anions in 2D carrier and its enhanced antitumor efficiency for boron neutron capture therapy. Advanced Functional Materials, 1704470.Google Scholar
  10. Choi, G., Kim, S.Y., Oh, J.M., & Choy, J.H. (2012). Drug-ceramic 2-dimensional nanoassemblies for drug delivery system in physiological condition. Journal of the American Ceramic Society, 95, 2758–2765.CrossRefGoogle Scholar
  11. Choi, G., Kwon, O., Oh, Y., Yun, C.O., & Choy, J.H. (2014). Inorganic nanovehicle targets tumor in an orthotopic breast cancer model. Scientific Reports, 4, 4430.Google Scholar
  12. Choi, G., Lee, J.H., Oh, Y.J., Choy, Y.B., Park, M.C., Chang, H.C., & Choy, J.H. (2010). Inorganic-polymer nanohybrid carrier for delivery of a poorly-soluble drug, ursodeoxycholic acid. International Journal of Pharmaceutics, 402, 117–122.CrossRefGoogle Scholar
  13. Choi, S.J., Oh, J.M., & Choy, J.H. (2008). Safety aspect of inorganic layered Nanoparticles: size-dependency in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 8, 529–5301.Google Scholar
  14. Choi, S.J., Oh, J.M., Chung, H.E., Hong, S.H., Kim, I.H., & Choy, J.H. (2013). In vivo anticancer activity of methotrexate-loaded layered double hydroxide nanoparticles. Current Pharmaceutical Design, 19, 7196–7202.CrossRefGoogle Scholar
  15. Choi, S.J., Oh, J.M., Park, T., & Choy, J.H. (2007). Cellular toxicity of inorganic hydroxide nanoparticles. Journal of Nanoscience and Nanotechnology, 7, 4017–4020.CrossRefGoogle Scholar
  16. Choi, G., Piao, H., Alothman, Z.A., Vinu, A., Yun, C.O., & Choy, J.H. (2016). Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model. International Journal of Nanomedicine, 11, 337–3487.CrossRefGoogle Scholar
  17. Choy, J.H. (2004). Intercalative route to heterostructured nanohybrid. Journal of Physics and Chemistry Solids, 65, 373–383.CrossRefGoogle Scholar
  18. Choy, J.H., Kwak, S.Y., Jeong, Y.J., & Park, J.S. (2000). Inorganic layered double hydroxide as a non-viral vector. Angewante Chemie International Edition, 39, 4042–4045.Google Scholar
  19. Choy, J.H., Kwak, S.Y., Park, J.S., Jeong, Y.J., & Portier, J. (1999). Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. Journal of the American Chemical Society, 121, 1399–1400.CrossRefGoogle Scholar
  20. Demir, F., Demir, B., Yalcinkaya, E.E, Cevik, S., Demirkol, D.O., Anik, U., & Timur, S. (2014). Amino acid intercalated montmorillonite: electrochemical biosensing applications. RSC Advances, 4, 50107–50113.CrossRefGoogle Scholar
  21. Ding, L., Hu, Y., Luo, Y., Zhu, J., Wu, Y., Cao, X., Peng, C., Shi, X., & Guo, R. (2016). Laponite®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomaterials Science, 4, 474–482.CrossRefGoogle Scholar
  22. Dufort, S., Sancey, L., Wenk, C., Josserand, V., & Coll, J.L. (2010). Optical small animal imaging in the drug discovery process. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1798, 2266–2273.CrossRefGoogle Scholar
  23. Estelrich, J., Sánchez-Martín, M.J., & Busquets, M.A. (2015). Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International Journal of Nanomedicine, 10, 1727–1742.Google Scholar
  24. Gaharwar, A.K., Mihaila, S.M., Swami, A.S., Patel, A., Sant, S., Reis, R.L., Marques, A.P., Gomes, M.E., & Khademhosseini, A. (2013). Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Advanced Materials, 25, 3329–3336.CrossRefGoogle Scholar
  25. Gambhir, S.S. (2002). Molecular imaging of cancer with positron emission tomography. Nature Reviews Cancer, 2, 683–693.CrossRefGoogle Scholar
  26. Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2014). Antibiotic eluting clay mineral (Laponite®). for wound healing application: an in vitro study. Journal of Materials and Science, 25, 2513–2526.Google Scholar
  27. Ghadiri, M., Hau, H., Chrzanowski, W., Agus, H., & Rohanizadeh, R. (2013). Laponite clay as a carrier for in situ delivery of tetracycline. RSC Advances, 3, 20193–20201.CrossRefGoogle Scholar
  28. Green, B. (2004). Focus on aripiprazole. Current Medical Research Opinion, 20, 207–213.CrossRefGoogle Scholar
  29. Hamilton, A.R., Hutcheon, G.A., Roberts, M., & Gaskell, E.E., (2014). Formulation and antibacterial profiles of clay-ciprofloxacin composites. Applied Clay Science, 87, 129–135.CrossRefGoogle Scholar
  30. Han, H.K., Lee, Y.C., Lee, M.Y., Patil, A.J., & Shin, H.J. (2011). Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study. ACS Applied Materials & Interfaces, 3, 2564–2572.CrossRefGoogle Scholar
  31. Harrison, T.S. and Perry, C.M. (2004). Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs, 64, 1715–1736.CrossRefGoogle Scholar
  32. Iliescu, R.I., Andronescu, E., Ghitulica, C.D., Voicu, G., Ficai, A., & Hoteteu, M. (2014). Montmorillonite-alginate nanocomposite as a drug delivery system-incorporation and in vitro release of irinotecan. International Journal of Pharmaceutics, 463, 184–192.CrossRefGoogle Scholar
  33. James L., Groen, S.D., & Coveney, P.V. (2015). Mechanism of exfoliation and prediction of materials properties of clay-polymer nanocomposites from multiscale modeling. Nano Letters, 15, 8108–8113.CrossRefGoogle Scholar
  34. Joshi, N., Rawatm K., Solanki, P.F., & Bohida, H.B. (2015). Biocompatible laponite ionogels based non-enzymatic oxalic acid sensor. Sensing and Bio-sensing Research, 5, 105–111.CrossRefGoogle Scholar
  35. Jung, H., Kim, H.M., Choy, Y.B., Hwang, S.J., & Choy, J.H. (2008). Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. International Journal of Pharmaceutics, 349, 283–290.CrossRefGoogle Scholar
  36. Kaassis A.Y.A., Xu, S.M., Guan, S., Evans, D.G., Wei, M., & Williams, G.R. (2016). Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance. Journal of Solid State Chemistry, 238, 129–138.CrossRefGoogle Scholar
  37. Kawase, M., Hayashi, Y., Kinoshita, F., Yamato, E., Miyazaki, J., Yamakawa, J., Ishida, T., Tamura, M., & Yagi, K. (2004). Protective effect of montmorillonite on plasmid DNA in oral gene delivery into small intestine. Biological and Pharmaceutical Bulletin, 27, 2049–2051.CrossRefGoogle Scholar
  38. Kevadiya, B.D., Thumbar, R.P., Rajput, M.M., Rajkumar, S., Brambhatt, H., Joshi, G.V., Dangi, G.P., Mody, H.M., Gadhia, P.K., & Bajaj, H.C. (2012). Montmorillonite/poly-(ε-caprolactone). composites as versatile layered material: reservoirs for anticancer drug and controlled release property. European Journal of Pharmaceutical Sciences, 47, 265–272.CrossRefGoogle Scholar
  39. Khalil, M.M., Tremoleda, J.L., Bayomy, T.B., & Gsell, W. (2011). Molecular SPECT imaging: an overview. International Journal of Molecular Imaging, 2011, 1–15.CrossRefGoogle Scholar
  40. Kim, M.H., Hur, W., Choi, G., Min, H.S., Choy, Y.B., & Choy, J.H. (2016). Theranostic bioabsorbable bone fixation plate with drug-layered double hydroxide nanohybrids. Advance Healthcare Materials, 5, 2765–2775.CrossRefGoogle Scholar
  41. Kim, T.H., Lee, J.A., Choi, S.J., & Oh, J.M. (2014). Polymer coated CaAl-layered double hydroxide nanomaterials for potential calcium supplement. International Journal of Molecular Sciences, 15, 22563–22579.CrossRefGoogle Scholar
  42. Kim, T.H., Lee, J.Y., Kim, M.K., Park, J.H., & Oh, J.M. (2016). Radioisotope Co-57 incorporated layered double hydroxide nanoparticles as a cancer imaging agent. RSC Advances, 6, 48415–48419.CrossRefGoogle Scholar
  43. Kim, J.Y., Yang, J.H., Lee, J.H., Choi, G., Park, D.H., Jo, M.R., Choi, S.J., & Choy, J.H. (2015). 2D inorganic-antimalarial drug-polymer hybrid with pH responsive solubility. Chemistry - An Asian Journal, 10, 2264–2271.CrossRefGoogle Scholar
  44. Lee, J.H., Choi, G., Oh, Y.J., Park, J.W., Choy, Y.B., Park, M.C., Yoon, Y.J., Lee, H.J., Chang, H.C., & Choy, J.H. (2012). A nanohybrid system for taste masking of sildenafil. International Journal of Nanomedicine, 7, 1635–1649.Google Scholar
  45. Lee, J.E., Gwak, G.H., Cho, H.M., Kim, C.Ch., Lee, M.E., & Oh, J.M. (2016). Controlled drug release in silicone adhesive utilizing particulate additives. Korean Journal of Chemical Engineering, 34, 1600–1603.CrossRefGoogle Scholar
  46. Long, M., Zhang, Y., Huang, P., Chang, S., Hu, Y., Yang, Q., Mao, L., & Yang, H. (2018). Emerging nanoclay composite for effective hemostasis. Advanced Functional Materials, 28, 1704452–1704461.CrossRefGoogle Scholar
  47. Lvov, Y.M., Devilliers, M.M., & Fakhrullin, R.F. (2016). The application of halloysite tubule nanoclay in drug delivery. Expert Opinion on Drug Delivery, 13, 977–986.CrossRefGoogle Scholar
  48. Ma, R., Liu, Z., Li, L., Lyi, N., & Sasaki, T. (2006). Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. Journal of Materials Chemistry, 16, 3809–3813.CrossRefGoogle Scholar
  49. Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A.M., & Jos, A. (2015). Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environmental Research, 138, 233–254.CrossRefGoogle Scholar
  50. Margarita, D., López-Blanco, M., Aranda, P., Leroux, F., & Ruiz-Hitzky, E. (2005). Bio-nanocomposites based on layered double hydroxides. Chemistry of Materials, 17, 1969–1977.CrossRefGoogle Scholar
  51. Marwah, H., Garg, T., Goyal, A.K., & Rath, G. (2016). Permeation enhancer strategies in transdermal drug delivery. Drug Delivery, 23, 564–578.CrossRefGoogle Scholar
  52. Massaro, M., Colletti, C.G., Noto, R., Riela, S., Poma, P., Guernelli, S., Parisi, F., Milioto, S., & Lazzara, G. (2015). Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems. International Journal of Pharmaceutics, 478, 476–485.CrossRefGoogle Scholar
  53. McRobbie, D.W., Moore, E.A., & Graves, M.J. (2017). MRI from Picture to Proton. Cambridge University Press, pp. 1–7.Google Scholar
  54. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.CrossRefGoogle Scholar
  55. Mustafa, R., Hu, Y., Yang, J., Chen, J., Wang, H., Zhang, G., & Shi, X. (2016). Synthesis of diatrizoic acid-modified LAPONITE® nanodisks for CT imaging applications. RSC Advances, 6, 57490–57496.CrossRefGoogle Scholar
  56. Nair, B.P., Sindhu, M., & Nair, P.D. (2016). Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids and Surfaces B, 143, 423–430.CrossRefGoogle Scholar
  57. Oh, J.M., Biswick, T.T., & Choy, J.H. (2009). Layered nanomaterials for green materials. Journal of Materials Chemistry, 19, 2553.CrossRefGoogle Scholar
  58. Oh, Y.J., Choi, G., Choy, Y.B., Park, J.W., Park, J.H., Lee, H.J., Yoon, Y.J., Chang, H.C., & Choy, J.H. (2013). Aripiprazole-montmorillonite: a new organic-inorganic nanohybrid material for biomedical applications. Chemistry - A European Journal, 19, 4869–4875.CrossRefGoogle Scholar
  59. Oh, J.M., Choi, S.J., Kim, S.T., & Choy, J.H. (2006). Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjugate Chemistry, 17, 1411–1417.CrossRefGoogle Scholar
  60. Oh, J.M., Choi, S.J., Lee, G. E., Kim, J.E., & Choy, J.H. (2009). Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chemistry - An Asian Journal, 4, 67–73.CrossRefGoogle Scholar
  61. Park, D.H., Cho, J., Kwon, O.J. Yun, C.O., & Choy, J.H. (2016). Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation. Angewandte Chemie International Edition, 55, 4582–4586.CrossRefGoogle Scholar
  62. Park, J.K., Choy, Y.B., Oh, J.M., Kim, J.Y., Hwang, S.J., & Choy, J.H. (2008). Controlled release of donepezil intercalated in smectite clays. International Journal of Pharmaceutics, 539, 198–204.CrossRefGoogle Scholar
  63. Park, D.H., Hwang, S.J., Oh, J.M., Yang, J.H., Choy, J.H. (2013). Polymer−inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 38, 1442–1486.CrossRefGoogle Scholar
  64. Prausnitz, M.R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26, 1261–1268.CrossRefGoogle Scholar
  65. Ray, S., Saha, S., Sa, B., & Chakraborty, J. (2017). In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma. Drug Delivery and Translational Research, 7, 259–275.CrossRefGoogle Scholar
  66. Reichle, W.T. (1986). Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22, 135–141.CrossRefGoogle Scholar
  67. Ryu, S.J., Jung, H., Oh, J.M., Lee, J.k., & Choy, J.H. (2010). Layered double hydroxide as novel antibacterial drug delivery system. Journal of Physics and Chemistry of Solids, 71, 685–688.Google Scholar
  68. Saha, K., Butola, B.S., & Joshi, M. (2014). Synthesis and characterization of chlorhexidine acetate drug-montmorillonite intercalates for antibacterial applications. Applied Clay Science, 101, 477–483.CrossRefGoogle Scholar
  69. Sarcinelli, M.A., de Souza Albernaz, M., Szwed, M., Iscaife, A., Leite, K.R.M., Junqueira, M., Bernardes, E.S., Silva, E.O., Tavares, M.I.B., & Santos-Oliveira, R. (2016). Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals. OncoTargets and Therapy, 9, 5847–5854.CrossRefGoogle Scholar
  70. Shi, S., Fliss, B.C., Gu, Z., Zhu, Y., Hong, H., Valdovinos, H.F., Hernandez, R., Goel, S., Luo, H., Chen, F., Barnhart, T.E., Nickles, R.J., & Xu, Z.P. (2015). Chelator-free labeling of layered double hydroxide nanoparticles for in vivo PET imaging. Scientific Reports, 5, 16930.CrossRefGoogle Scholar
  71. Soussou, A., Gammoudi, I., Kalboussi, A., Grayby-Heywang, C., Cohen-Bouhacina, T., & Baccar, Z.M. (2017). Hydrocalumite thin films for polyphenol biosensor elaboration. IEEE Transacions on NanoBioscience, 16, 650–655.CrossRefGoogle Scholar
  72. Stephen, Z.R., Kievit, F.M., & Zhang, M. (2011). Magnetite nanoparticles for medical MR imaging. Materials Today, 14, 330–338.CrossRefGoogle Scholar
  73. Stockert, J.C., Blázquez-Castro, A., Cañete, M., Horobin, R.W., & Villanueva, Á. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica, 114, 785–796.CrossRefGoogle Scholar
  74. Suh, Y.J., Kil, D.S., Chung, K.S., Abdullayev, E., Lvov, Y.M., & Mongayt, D. (2011). Natural nanocontainer for the controlled delivery of glycerol as a moisturizing agent. Journal of Nanoscience and Nanotechnology, 11, 611–665.Google Scholar
  75. Thakur, G., Singh, A., & Singh, I. (2016). Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin. International Journal of Pharmaceutical Investigation, 6, 23–31.CrossRefGoogle Scholar
  76. Vergaro, V., Abdullayev, E., Lvov, Y.M., Zeitoun, A., Cingolani, R., Rinaldi, R., & Leporatti, S. (2010). Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 11, 820–826.CrossRefGoogle Scholar
  77. Vergaro, V., Lvov, Y.M., & Leporatti, S., (2012). Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromolecular Bioscience, 12, 1265–1271.CrossRefGoogle Scholar
  78. Wang, X., Gong, J., Rong, R., Gui, Z., Hu, T., & Xu, X. (2018). Halloysite nanotubes-induced Al accumulation and fibrotic response in lung of mice after 30-day repeated oral administration. Journal of Agricultural and Food Chemistry, 66, 2925–2933.CrossRefGoogle Scholar
  79. Wang, G., Maciel, D., Wu, Y., Rodrigues, J., Shi, X., Yuan, Y., Liu, C., Tomas, H., & Li, Y. (2014). Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. ACS Applied Materials & Interfaces, 6, 16687–16695.CrossRefGoogle Scholar
  80. Wang, C., Wang, S., Li, K., Li, J., Zhang, Y., Li, J., Liu, X., Shi, X., & Zhao, Q. (2014). Preparation of laponite bioceramics for potential bone tissue engineering applications. PLOS One, 9, e99585CrossRefGoogle Scholar
  81. Wang, L., Xing, H., Zhang, S., Ren, Q., Pan, L., Zhang, K., Bu, W., Zheng, X., Zhou, L., Peng, W., Hua, Y., & Shi, J. (2013). A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials, 34, 3390–3401.CrossRefGoogle Scholar
  82. Wei, W., Minullina, R., Abdullayev, E., Fakhrullin, R., Mills, D., & Lvov, Y. (2014). Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Advances, 4, 488–494.CrossRefGoogle Scholar
  83. Wen, X., Yang, Z., Yan, J., & Xie, X. (2015). Green preparation and characterization of a novel heat stabilizer for poly(vinyl chloride)-hydrocalumites. RSC Advances, 5, 32020–32026CrossRefGoogle Scholar
  84. Wu, Y.P., Yang, J., Gao, H.Y., Shen, Y., Jiang, L., Zhou, C., Li, Y.F., He, R.R., & Liu, M. (2018). Folate-conjugated halloysite nanotubes, an efficient drug carrier, deliver doxorubicin for targeted therapy of breast cancer. ACS Applied Nano Matererials, 1, 595–608.CrossRefGoogle Scholar
  85. Xavier, J.R., Thakur, T., Desai, P., Jaiswal, M.K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R., & Gaharwar, A.K. (2015). Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano, 9, 3109–3118.CrossRefGoogle Scholar
  86. Xing, H., Hwang, K., & Lu, Y. (2016). Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics, 6, 1336–1352.CrossRefGoogle Scholar
  87. Yah, W.O., Takahara, A., Lvov, Y.M. (2012). Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. Journal of the American Chemical Society, 134, 1853–1859.CrossRefGoogle Scholar
  88. Yang, J.H., Han, Y.S., Park, M., Park, T., Hwang, S.J., & Choy, J.H. (2007). New Inorganic-based drug delivery system of indole-3-acetic acid-layered metal hydroxide nanohybrids with controlled release rate. Chemistry of Materials, 19, 2679–2685.CrossRefGoogle Scholar
  89. Yang, J.H., Jung, H., Kim, S.Y., Yo, C.H., & Choy, J.H. (2013). Heterostructured layered aluminosilicate-itraconazole nanohybrid for drug delivery system. Journal of Nanoscience and Nanotechnology, 13, 7331–7336.CrossRefGoogle Scholar
  90. Yang, L., Shao, Y., & Han, H.K. (2014). Improved pH-dependent drug release and oral exposure of telmisartan, a poorly soluble drug through the formation of drug-aminoclay complex. International Journal of Pharmaceutics, 471, 258–263.CrossRefGoogle Scholar
  91. Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75–93.CrossRefGoogle Scholar
  92. Zhou, T., Jia, L., Luo, Y.F., Xu, J., Chen, R.H., Ge, Z.J., Ma, T.L., Chem, H., & Zhu, T.F. (2016). Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging. International Journal of Nanomedicine, 11, 4765–4776.CrossRefGoogle Scholar
  93. Zhuang, Y., Zhao, L., Zheng, L., Hu, Y., Ding, L., Liu, C., Zhao, J., Shi, X., & Guo, R. (2017). LAPONITE-polyethylenimine based theranostic nanoplatform for tumor-targeting CT imaging and chemotherapy. ACS Biomaterials Science & Engineering, 3, 431–442.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2019

Authors and Affiliations

  • Goeun Choi
    • 1
    • 2
  • Huiyan Piao
    • 1
  • Sairan Eom
    • 1
  • Jin-Ho Choy
    • 1
    Email author
  1. 1.Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and NanoscienceEwha Womans UniversitySeoulRepublic of Korea
  2. 2.Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonanRepublic of Korea

Personalised recommendations