Advertisement

Preparation and Characterization of High- Viscosity Montmorillonite

  • Limei Wu
  • Xiaolong Wang
  • Mingyu Zhao
  • Fei Gao
  • Lili Gao
  • Guocheng Lv
  • Li Yin
  • Changwei XuEmail author
Article
  • 14 Downloads

Abstract

Hydrophobicity, high viscosity, and dispersion are important properties for organo-montmorillonites, and all organo-montmorillonite configurations have yet to be fully characterized with respect to this property. High-viscosity montmorillonite (Mnt) is useful in gels and as an adsorber. The current study focused on modifying Mnt using organic cations and anions of various chain lengths in batch experiments with various concentrations and ratios. The viscosity of organic Mnt reached up to 395 mP.s. Molecular dynamics simulations and X-ray diffraction (XRD) were used to identify the conditions and arrangement of organic cations and anions in the Mnt interlayer area. The intercalation mechanism of organic cations and anions was also determined, providing a theoretical basis for the preparation of high-viscosity Mnt.

Keywords

Adsorption Montmorillonite Organic Intercalation Viscosity 

Notes

Acknowledgements

This research was jointly funded by China Postdoctoral Science Foundation funded project (2018M631818) and the Doctoral Startup Foundation of Liaoning (20170520315).

References

  1. Alemdar, A., Őztekin, N., & Gűngőr, N. (2005). Effects of polyethyleneimine adsorption on the rheological properties of purified bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252, 95–98.CrossRefGoogle Scholar
  2. Austin, J. C., Perry, A., Richter, D. D., & Schroeder, P. A. (2018). Modifications of 2:1 clay minerals in kaolinite-dominated ultisol under changing land-use regimes. Clays and Clay Minerals, 66, 61–73.Google Scholar
  3. Bumbudsanpharoke, N., Lee, W., Choi, J. C., & Park, S. J. (2017). Influence of montmorillonite nanoclay content on the optical, thermal, mechanical, and barrier properties of low-density polyethylene. Clays and Clay Minerals, 65, 387–397.CrossRefGoogle Scholar
  4. Dultz, S., Riebe, B., & Bunnenberg, C. (2005). Temperature effects on iodine adsorption on organo-clay minerals: II. Structural effects. Applied Clay Science, 28, 17–30.CrossRefGoogle Scholar
  5. Gűngőr, N., Alemdar, N., & Atici, O. (2001). The effect of SDS surfactant on the flow and zeta potential of bentonite suspensions. Materials Letters, 51, 250–254.CrossRefGoogle Scholar
  6. Günister, E., İşçi, S., Őztekin, N., Erim, F. B., Ece, Ő. I., & Gůngőr, N. (2006). Effect of cationic surfactant adsorption on the rheological and surface properties of bentonite dispersions. Journal of Colloid and Interface Science, 303, 137–141.CrossRefGoogle Scholar
  7. He, H., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., & Yang, D. (2006) Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262–271.Google Scholar
  8. Irannajad, M. & Haghighi, H. K. (2017). Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics, and kinetics studies. Clays and Clay Minerals, 65, 52–62.CrossRefGoogle Scholar
  9. İşçi, S., Gűner, F. S., & Güngör, N. (2005). Investigation of rheological and collodial properties of bentonitic clay dispersion in the presence of a cationic surfactant. Progress in Organic Coatings, 54, 28–33.CrossRefGoogle Scholar
  10. İşçi, S., Günister, E., Alemdar, A., Ece, Ö. I., & Güngör, N. (2008). The influence of DTABr surfactant on the electrokinetic and rheological properties of soda-activated bentonite dispersions. Materials Letters, 62, 81–84.CrossRefGoogle Scholar
  11. Jeschke, F. & Meleshyn, A. (2011). A Monte Carlo study of interlayer and surface structures of tetraphenylphosphonium-modified Na-montmorillonite. Geoderma, 169, 33–40.CrossRefGoogle Scholar
  12. Kaci, A. & Chaouche, M. (2011). Influence of bentonite clay on the rheological behaviour of fresh mortars. Cement and Concrete Research, 41, 373–379.CrossRefGoogle Scholar
  13. Karataş, D., Tekin, A., & Çelik, M. S. (2017). Density functional theory computation of organic compound penetration into sepiolite tunnels. Clays and Clay Minerals, 65, 1–13.CrossRefGoogle Scholar
  14. Kwolek, T., Hodorowicz, M., Stadnicka, K., & Czapkiewicz, J. (2003). Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite. Journal of Colloid and Interface Science, 264(1), 14–19.CrossRefGoogle Scholar
  15. Lagaly, G. (1982). Layer charge heterogenerity in vermiculites. Clays and Clay Mineral, 30, 215–222.CrossRefGoogle Scholar
  16. Lv, G. C., Liu, L., Li, Z. H., Liao, L. B., & Liu, M. T. (2012). Probing the interactions between chlorpheniramine and 2:1 phyllosilicates. Journal of Colloid and Interface Science, 374, 218–225.CrossRefGoogle Scholar
  17. Martín Alfonso, J. E., Valencia, C., & Franco, J. M. (2014). Composition-property relationship of gel-like dispersions based on organo-bentonite, recycled polypropylene and mineral oil for lubricant purposes. Applied Clay Science, 87(1), 265–271.CrossRefGoogle Scholar
  18. Menezes, R. R., Marques, L. N., Campos, L. A., Ferreira, H. S., & Santana, L. N. (2010). Use of statistical design to study the influence of CMC on the rheological properties of bentonite dispersions for water-based drilling fluids. Applied Clay Science, 49, 13–20.CrossRefGoogle Scholar
  19. Ouhadi, V. R., Yong, R. N., & Sedighi, M. (2006). Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite. Applied Clay Science, 32, 217–231.CrossRefGoogle Scholar
  20. Pospíšil, M., Čapková, P., Weissmannová, H., Klika, Z., & Trchová, M. (2003). Structure analysis of montmorillonite intercalated with rhodamine B: modeling and experiment. Journal of Molecular Modeling, 9(1), 39–46.CrossRefGoogle Scholar
  21. Tunç, S. & Duman, O. (2008). The effect of different molecular weight of poly (ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 93–99.CrossRefGoogle Scholar
  22. Vassilios, C., Kelessidis, C., Cassiani, P., & Antonios, F. (2009). Application of Greek lignite as an additive for controlling rheological and filtration properties of water–bentonite suspensions at high temperatures: A review. International Journal of Coal Geology, 77, 394–400.CrossRefGoogle Scholar
  23. Wu, L. M., Tong, D. S., & Zhao, L. Z. (2014a). Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite. Applied Clay Science, 95(3), 74–82.CrossRefGoogle Scholar
  24. Wu, L. M., Liao, L. M., Lv, G. C., Qin, F. X., & Li, Z. H. (2014b). Microstructure and process of intercalation of imidazolium ionic liquids into montmorillonite. Chemical Engineering Journal, 236, 306–313.CrossRefGoogle Scholar
  25. Wu, L. M., Zhou, C. H., Tong, D. S., Yu, W. H., & Wang, H. (2014c). Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar. Cellulose, 21(4), 2845–2857.CrossRefGoogle Scholar
  26. Wu, L. M., Yang, C. X., Mei, L. F., Qin, F. X., Liao, L. B., & Lv, G. C. (2014d). Microstructure of different chain length ionic liquids intercalated into montmorillonite: a molecular dynamics study. Applied Clay Science, 99, 266–274.CrossRefGoogle Scholar
  27. Wungu, T. D. K., Aspera, S. M., David, M. Y., Dipojono, H. K., Nakanishi, H., & Kasai, H. (2011). Absorption of lithium in montmorillonite: a density functional theory (DFT) study. Journal of Nanoscience and Nanotechnology, 11(4), 2793–2801.CrossRefGoogle Scholar
  28. Yalçin, T., Alemdar, A., Ece, Ö. I., & Güngör, N. (2002). By particle interactions and rheological properties of bentonites+ALS suspensions. Materials Letters, 53, 211–215.CrossRefGoogle Scholar
  29. Yoshimoto, S., Ohashi, F., & Kameyama, T. (2005). X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing. Solid State Communications, 136, 251–256.CrossRefGoogle Scholar
  30. Yu, W. H., Ren, Q. Q., Tong, D. S., Zhou, C. H., & Wang, H. (2014). Clean production of CTAB-montmorillonite: formation mechanism and swelling behavior in xylene. Applied Clay Science, 97-98, 222–234.CrossRefGoogle Scholar
  31. Yu, W. H., Zhu, T. T., Tong, D. S., Wang, M., Wu, Q. Q., & Zhou, C. H. (2017). Preparation of organo-montmorillonites and the relationship between microstructure and swellability. Clays and Clay Minerals, 65, 417–430.CrossRefGoogle Scholar
  32. Zeng, Q. H., Yu, A. B., Lu, G. Q., & Standish, R. K. (2003). Molecular dynamics simulation of organic−inorganic nanocomposites: layering behavior and interlayer structure of organoclays. Chemistry of Materials, 15(25), 4732–4738.CrossRefGoogle Scholar
  33. Zhou, C. H. (2011). Cheminform abstract: Strategies towards clay-based designer catalysts for green and sustainable catalysis. Cheminform, 42(47),  https://doi.org/10.1002/chin.201147260.CrossRefGoogle Scholar
  34. Zhou, C. H. & Keeling, J. (2013). Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Applied Clay Science, 74, 3–9.CrossRefGoogle Scholar
  35. Zhou, C. H., Shen, Z. F., Liu, L., & Liu, S. (2011). Preparation and functionality of clay-containing films. Journal of Materials Chemistry, 21(39), 15132–15153.Google Scholar
  36. Zhou, C. H., Zhao, L. Z., Wang, A. Q., Chen, T. H., & He, H. P. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science, 119, 3–7.CrossRefGoogle Scholar
  37. Zhou, C. H., Zhou, Q., Wu, Q. Q., Petit, S., Jiang, X. C., Xia, S. T., Li, C. S., & Yu, W. H. (2019). Modification, hybridization and applications of saponite: An overview. Applied Clay Science, 168, 136–154.CrossRefGoogle Scholar
  38. Zhou, J. H., Lu, X. C., Zhu, X. Z., Liu, X. D., Wei, J. M., & Zhou, Q. (2012). Interlayer structure and dynamics of HDTMA(+)-intercalated rectorite with and without water: a molecular dynamics study. The Journal of Physical Chemistry C, 116(24), 13071–13078.CrossRefGoogle Scholar
  39. Zhou, L. M., Chen, H., Jiang, X. H., Lu, F., Zhou, Y., & Yin, W. (2009). Modification of montmorillonite surfaces using a novel class of cationic Gemini surfactants. Journal of Colloid and Interface Science, 332(1), 16–21.CrossRefGoogle Scholar
  40. Zhou, Q., Shen, W., Zhu, J.X., Zhu, R.L., He, H.P., Zhou, J.H., & Yuan, P. (2014). Structure and dynamic properties of water saturated CTMA-montmorillonite: molecular dynamics simulations. Applied Clay Science, 97, 62–71.Google Scholar
  41. Zhu, T. T., Zhou, C. H., Kabwe, F. B., Wu, Q. Q., Li, C. S., & Zhang, J. R. (2019). Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 48–66.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2019
AE: Chun-Hui Zhou

Authors and Affiliations

  • Limei Wu
    • 1
  • Xiaolong Wang
    • 2
  • Mingyu Zhao
    • 1
  • Fei Gao
    • 1
  • Lili Gao
    • 1
  • Guocheng Lv
    • 3
  • Li Yin
    • 3
  • Changwei Xu
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringShenyang Jianzhu UniversityShenyangChina
  2. 2.Procurement and Bidding OfficeShenyang Jianzhu UniversityShenyangChina
  3. 3.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations