Clays and Clay Minerals

, Volume 67, Issue 3, pp 244–251 | Cite as

Preparation of a Novel Clay/Dye Composite and its Application in Contaminant Detection

  • Limei Wu
  • Xuyuan Bao
  • Haoyu Zhong
  • Yuwei Pan
  • Guocheng LvEmail author
  • Libing Liao


Although fluorescence detection is a sensitive method in the field of pollutant analysis, its application is restricted due to the fluorescence shown by organic material being quenched after aggregation and to low photo-thermal stability. To address these issues, a novel mineral/dye composite material was prepared by intercalating a fluorescence molecule, Rhodamine (R6G), into the interlayer space of montmorillonite (Mnt). This composite material greatly enhanced the light stability and efficiency of R6G. After enhancement, the fluorescence lifetime of R6G-Mnt was eight times longer than originally and the luminous intensity was 20 times greater. Chromium at the mmol/L (mM) level can be detected by the naked eye when its enhanced fluorescent property is fabricated into a solid test paper, even though a fluorescence spectrophotometer should be used for detection at the 0.01 μmol/L level in the sensing range 0.01 μmol/L to 100 mmol/L. These results can provide new avenues as well as a theoretical and experimental foundation for the development of novel supramolecular luminescent material.


Detection Fluorescence quenching Inorganic/organic composite Light-emitting efficiency 



This research was funded jointly funded by the China Postdoctoral Science Foundation funded project (2018M631818) and the Doctoral Startup Foundation of Liaoning (20170520315).

Conflict of Interest

There are no conflicts of interest to declare.


  1. An, N., Zhou, C. H., Zhuang, X. Y., Tong, D. S., & Yu, W. H. (2015). Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Applied Clay Science, 114, 283–296.CrossRefGoogle Scholar
  2. Austin, J. C., Perry, A., Richter, D. D., & Schroeder, P. A. (2018). Modifications of 2:1 clay minerals in kaolinite-dominated ultisol under changing land-use regimes. Clays and Clay Minerals, 66, 61–73.Google Scholar
  3. Bao, X., Shi, J., Nie, X., Zhou, B., Wang, X., Zhang, L., Liao, H., & Pang, T. (2014). A New Rhodamine B-based “on–off” chemical sensor with high selectivity and sensitivity toward Fe3+ and its imaging in living cells. Bioorganic & Medicinal Chemistry, 22, 4826–4835.CrossRefGoogle Scholar
  4. Bumbudsanpharoke, N., Lee, W., Choi, J. C., Park, S. J., Kim, M., & Ko, S. (2017). Influence of montmorillonite nanoclay content on the optical, thermal, mechanical, and barrier properties of low-density polyethylene. Clays and Clay Minerals, 65, 387–397.CrossRefGoogle Scholar
  5. Čeklovský, A., Czímerová, A., Lang, K., & Bujdák, J. (2009). Effect of the layer charge on the interaction of porphyrin dyes in layered silicates dispersions. Journal of Luminescence, 129, 912–918.CrossRefGoogle Scholar
  6. Dultz, S., Riebe, B., & Bunnenberg, C. (2005). Temperature effects on iodine adsorption on organo-clay minerals: II. Structural effects. Applied Clay Science, 28, 17–30.Google Scholar
  7. Ego, C., Marsitzky, D., Becker, S., Zhang, J., Grimsdale, A. C., Müllen, K., Mackenzie, K., Silva, C., & Friend, R. H. (2003). Attaching perylene dyes to polyfluorene: Three simple, efficient methods for facile color tuning of light-emitting polymers. Journal of the American Chemical Society, 125, 437–443.CrossRefGoogle Scholar
  8. Gao, F., Ye, Q., Cui, P., & Zhang, L. (2012). Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine. Journal of Agricultural and Food Chemistry, 60, 4550–4558.CrossRefGoogle Scholar
  9. George, S. J., Rao, K. V., & Jain, A. (2014). Organic–inorganic light-harvesting scaffolds for luminescent hybrids. Journal of Materials Chemistry C, 2, 3055–3064.CrossRefGoogle Scholar
  10. Goswami, S., Paul, S., & Manna, A. (2013). Selective “Naked Eye” detection of Al(III) and PPi in aqueous media on a rhodamine–isatin hybrid moiety. RSC Advances, 3, 10639–10643.CrossRefGoogle Scholar
  11. Gui, R., An, X., Su, H., Shen, W., Chen, Z., & Wang, X. (2012). A near-infrared-emitting CdTe/CdS Core/shell quantum dots-based off–on fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta, 94, 257–262.CrossRefGoogle Scholar
  12. Haugland, R.P. (1994). Molecular probes: Handbook of Fluorescent Probes and Research Chemicals. International Union of Biochemistry and Medical Biology, Amsterdam.Google Scholar
  13. Irannajad, M., & Haghighi, H. K. (2017). Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: Equilibrium, thermodynamics, and kinetics studies. Clays and Clay Minerals, 65, 52–62.CrossRefGoogle Scholar
  14. Kantar, C., Cetin, Z., & Demiray, H. (2008). In situ stabilization of chromium (VI) in polluted soils using organic ligands: The role of galacturonic, glucuronic and alginic acids. Journal of Hazardous Materials, 159, 287–293.CrossRefGoogle Scholar
  15. Karataş, D., Tekin, A., & Çelik, M. S. (2017). Density functional theory computation of organic compound penetration into sepiolite tunnels. Clays and Clay Minerals, 65, 1–13.CrossRefGoogle Scholar
  16. Khurana, T. K. & Santiago, J. G. (2009). Effects of carbon dioxide on peak mode isota-chophoresis: Simultaneous preconcentration and separation. Lab on a Chip, 9, 1377–1384.Google Scholar
  17. Klebow, B. & Meleshyn, A. (2012). Monte carlo study of the adsorption and aggregation of alkyl trimethylammonium chloride on the montmorillonite−water interface. Langmuir, 28, 13274–13283.Google Scholar
  18. Krauss, T. N., Barrena, E., Lohmuller, T., Spatz, J., & Dosch, P. H. (2011). Growth mechanisms of phthalocyanine nanowires induced by Au nanoparticle templates. Physical Chemistry Chemical Physics, 13, 5940–5944.CrossRefGoogle Scholar
  19. Lalvani, S. B., Wiltowski, T., Hubner, A., Weston, A., & Mandich, N. (1998). Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent. Carbon, 36, 1219–1226.CrossRefGoogle Scholar
  20. Lee, I. H., Jang, L. W., & Polyakov, A. Y. (2015). Performance enhancement of GaN-based light emitting diodes by the interaction with localized surface plasmons. Nano Energy, 13, 140–173.CrossRefGoogle Scholar
  21. Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G., & Jensen, K. F. (2000). Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials, 12, 1102–1105.CrossRefGoogle Scholar
  22. Lee, Y. J., Lim, C., Suh, H., Song, E. J., & Kim, C. (2014). A Multifunctional sensor: Chromogenic sensing for Mn2+ and fluorescent sensing for Zn2+ and Al3+. Sensors and Actuators B: Chemical, 201, 535–544.CrossRefGoogle Scholar
  23. Lv, G. C., Liu, S. Y., Liu, M., Liao, L. B., Wu, L. M., Mei, L. F., Li, Z. H., & Pan, C. F. (2018). Detection and quantification of phenol in liquid and gas phases using a clay/dye composite. Journal of Industrial and Engineering Chemistry, 62, 284–290.CrossRefGoogle Scholar
  24. Magde, D., Wong, R., & Seybold, P. G. (2002). Fluorescence quantum yelds and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochemistry and Photobiology, 75, 327–334.CrossRefGoogle Scholar
  25. Mondal, M. K. (2009). Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column. Journal of Environmental Management, 90, 3266–3271.Google Scholar
  26. Montalti, M., Prodi, L., Zaccheroni, N., & Falini, G. (2002). Solvent-induced modulation of collective photophysical processes in fluorescent silica nanoparticles. Journal of the American Chemical Society, 124, 13540–13546.CrossRefGoogle Scholar
  27. Nolan, E. M., & Lippard, S. J. (2008). Tools and tactics for the optical detection of mercuric ion. Chemical Reviews, 108, 3443–3480.CrossRefGoogle Scholar
  28. Olmez, T. (2009). The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials, 162, 1371–1378.CrossRefGoogle Scholar
  29. Patra, D. & Mishra, A. K. (2002). Recent developments in multi-component synchronous fluorescence scan analysis. Trends in Analytical Chemistry, 2l, 787–798.Google Scholar
  30. Powell, M. J., Boomer, D. W., & Wiederin, D. R. (1995). Determination of chromium species in environmental samples using high-pressure liquid chromatography direct injection nebulization and inductively coupled plasma mass spectrometry. Analytical Chemistry, 67, 2474–2478.CrossRefGoogle Scholar
  31. Sergeyeva, T., Chelyadina, D., Gorbach, L., Brovko, O., Piletska, E., Piletsky, S., Sergeeva, L., & Elskaya, A. (2014). Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples. Biopolymers and Cell, 30, 209–215.Google Scholar
  32. Shi, L., Wang, Y., Ji, A., Gao, L., & Wang, Y. (2005). In situ direct bifunctionalization of mesoporous silica SBA-15. Journal of Materials Chemistry, 15, 1392–1396.CrossRefGoogle Scholar
  33. Skaff, H., Sill, K., & Emrick, T. J. (2004). Quantum dots tailored with poly (para-phenylene vinylene). Journal of the American Chemical Society, 126, 11322–11325.CrossRefGoogle Scholar
  34. Sperling, M., Xu, S., & Welz, B. (1992). Determination of chromium(III) and chromium(VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Analytical Chemistry, 64, 3101–3108.CrossRefGoogle Scholar
  35. Tong, W. Y., Djurisić, A. B., Xie, M. H., Ng, A. C. M., Cheung, K. Y., Chan, W. K., Leung, Y. H., Lin, H. W., & Gwo, S. J. (2006). Metal phthalocyanine nanoribbons and nanowires. Journal of Physical Chemistry B, 110, 17406–17413.CrossRefGoogle Scholar
  36. Wang, F. X., Liu, Y. D., & Pan, G. B. (2011). Vapor growth and photoconductivity of single-crystal nickel-phthalocyanine Nanorods. Materials Letters, 65, 933–936.CrossRefGoogle Scholar
  37. Wei Y. K., Mei L. F., Li R., Liu M., Lv G. C., Weng J. L., Liao L. B., Li Z. H., & Lu L. (2018). Fabrication of an AMC/MMT fluorescence composite for its detection of Cr(VI) in water. Frontiers in Chemistry, 6, 367.Google Scholar
  38. Whitney, D. L. & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.Google Scholar
  39. Wu, L. M., Liao, L. M., Lv, G. C., Qin, F. X., & Li, Z. H. (2014a). Microstructure and process of intercalation of imidazolium ionic liquids into montmorillonite. Chemical Engineering Journal, 236, 306–313.CrossRefGoogle Scholar
  40. Wu, L. M., Lv, G. C., Liao, L. B., & Qin, F. X. (2015a). Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. Journal of Contaminant Hydrology, 179, 1–9.CrossRefGoogle Scholar
  41. Wu, L. M., Lv, G. C., Liu, M., Li, Z. H., Liao, L. B., & Pan, C. F. (2015b). Adjusting the layer charges of host phyllosilicates to prevent luminescence quenching of fluorescence dyes. Journal of Physical Chemistry C, 119, 22625–22631.CrossRefGoogle Scholar
  42. Wu, L. M., Yang, C. X., Mei, L. F., Qin, F. X., Liao, L. B., & Lv, G. C. (2014b). Microstructure of different chain length ionic liquids intercalated into montmorillonite: A Molecular Dynamics Study. Applied Clay Science, 99, 266–274.CrossRefGoogle Scholar
  43. Wu, P., & Yan, X. P. (2010). A simple chemical etching strategy to generate “ion-imprinted” sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions. Chemical Communications, 46, 7046–7048.CrossRefGoogle Scholar
  44. Xu, H., Miao, R., Fang, Z., & Zhong, X. (2011). Quantum dot-based “turn-on” fluorescent probe for detection of zinc and cadmium ions in aqueous media. Analytica Chimica Acta, 687, 82–88.CrossRefGoogle Scholar
  45. Yan, D. P., Lu, J., Ma, J., Qin, S., Wei, M., Evans, D. G., & Duan, X. (2011a). Layered host–guest materials with reversible piezochromic luminescence. Angewandte Chemie International Edition, 50, 7037–7040.CrossRefGoogle Scholar
  46. Yan, D. P., Lu, J., Ma, J., Wei, M., Evans, D. G., & Duan, X. (2011b). Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angewandte Chemie International Edition, 50, 720–723.CrossRefGoogle Scholar
  47. Yu, W. H., Zhu, T. T., Tong, D. S., Wang, M., Wu, Q. Q., & Zhou, C. H. (2017). Preparation of organo-montmorillonites and the relationship between microstructure and swellability. Clays and Clay Minerals, 65, 417–430.CrossRefGoogle Scholar
  48. Zhang, H., Cui, Z., Wang, Y., Zhang, K., Ji, X., Lu, C., Yang, B., & Gao, M. (2003). From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Advanced Materials, 15, 777–780.CrossRefGoogle Scholar
  49. Zhang, H., Wang, C., Li, M., Ji, X., Zhang, J., & Yang, B. (2005). Fluorescent nanocrystal-polymer composites from aqueous nanocrystals: Methods without ligand exchange. Chemistry of Materials, 17, 4783–4788.CrossRefGoogle Scholar
  50. Zhang, Z., Xu, B., Su, J., Shen, L., Xie, Y., & Tian, H. (2011). Color-tunable solid-state emission of 2,2′2Biindenyl-based fluorophores. Angewandte Chemie International Edition, 123, 11858–11861.Google Scholar
  51. Zheng, M., Xie, Z., Qu, D., Li, D., Du, P., Jing, X., & Sun, Z. (2013). On-off-on gluorescent carbon dot nanosensor for recognition of Chromium(VI) and ascorbic acid based on the inner filter effect. ACS Applied Materials & Interfaces, 5, 13242–13247.CrossRefGoogle Scholar
  52. Zheng, Y., Orbulescu, J., Ji, X., Repoulos, F., Pham, S., & Leblanc, R. (2003). Development of fluorescent film sensors for the detection of divalent copper. Journal of the American Chemical Society, 125, 2680–2686.CrossRefGoogle Scholar
  53. Zhou, C. H., Zhao, L. Z., Wang, A. Q., Chen, T. H., & He, H. P. (2016). Current fundamental and applied research into clay minerals in China. Applied Clay Science, 119, 3–7.CrossRefGoogle Scholar
  54. Zhou, C. H., Zhou, Q., Wu, Q. Q., Jiang, X. C., Xia, S. T., Li, C. S., & Yu, W. H. (2019). Modification, hybridization and applications of saponite: An overview. Applied Clay Science, 168, 136–154.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2019

Authors and Affiliations

  • Limei Wu
    • 1
  • Xuyuan Bao
    • 2
  • Haoyu Zhong
    • 1
  • Yuwei Pan
    • 1
  • Guocheng Lv
    • 3
    Email author
  • Libing Liao
    • 3
  1. 1.School of Materials Science and EngineeringShenyang Jianzhu UniversityShenyangChina
  2. 2.The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of GeosciencesBeijingChina

Personalised recommendations