Advertisement

Clays and Clay Minerals

, Volume 67, Issue 3, pp 228–243 | Cite as

A New Kaolin Deposit in Western Africa: Mineralogical and Compositional Features of Kaolinite from Caluquembe (Angola)

  • Esperança Tauler
  • Jingyao XuEmail author
  • Marc Campeny
  • Sandra Amores
  • Joan Carles Melgarejo
  • Salvador Martinez
  • Antonio O. Gonçalves
Article
  • 7 Downloads

Abstract

Large kaolin deposits developed by weathering on Precambrian granitic rocks have been discovered in the Caluquembe area, Huíla province, Angola. To determine accuracy of analysis and to evaluate the kaolinite grade, a full-profile Rietveld refinement by X-ray Powder Diffraction (XRPD) and Thermal Gravimetric Analysis (TGA) was used. Caluquembe kaolin is composed mainly of kaolinite (44–93 wt.%), quartz (0–23 wt.%), and feldspar (4–14 wt.%). The Aparicio-Galán-Ferrell index (AGFI), calculated by XRPD profile refinement, indicates low- and medium-defect kaolinite. Kaolinite particles show a platy habit and they stack together forming ‘booklets’ or radial aggregates; they also occur as small anhedral particles in a finer-grained mass. Muscovite-kaolinite intergrowths have also been found. Whole-rock chemical analysis included major, trace, and Rare Earth Elements (REE). Chondrite-normalized REE patterns show the same tendency for all samples, with a significant enrichment in Light Rare Earth Elements (LREE). Mineralogical and compositional features of the Caluquembe kaolin indicate that it is a suitable material for the manufacture of structural products, such as bricks, paving stones, and roofing tiles. In addition, the significant REE contents of the Caluquembe kaolin can be considered as a potential future target of mining exploration.

Keywords

AGFI Angola Caluquembe Kaolinite REE 

Notes

Acknowledgments

This research was supported by the CGL2012-36263, CGL2006-12973 and CGL2009-13758 projects of the Ministerio de Ciencia e Innovación of the Spanish Government, the AGAUR 2014SGR01661 project of the Generalitat de Catalunya and by a FI grant to J. Xu (coded FI_B 00904) sponsored by the Secretaria d’Universitats i Recerca of the Departament d’Economia i Coneixement of the Generalitat de Catalunya. The authors acknowledge the Scientific and Technical Centers of the University of Barcelona (CCiTUB) for their support in carrying out experimental analyses. Anonymous reviewers and the editorial staff, are thanked for helpful comments.

References

  1. Aagaard, P. (1974). Rare earth elements adsorption on clay minerals. Bulletin du groupe français des argiles, 26, 193–199.CrossRefGoogle Scholar
  2. Aparicio, P. & Galán, E. (1999). Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 12–27.CrossRefGoogle Scholar
  3. Aparicio, P., Galán, E., & Ferrell, R. E. (2006). A new kaolinite order index based on XRD profile fitting. Clay Minerals, 41, 811–817.CrossRefGoogle Scholar
  4. Ashwal, L. D. & Twist, D. (1994). The Kunene complex, Angola/Namibia: a composite massif-type anorthosite complex. Geological Magazine, 131, 579–591.CrossRefGoogle Scholar
  5. Bailey, S. W. (1980). Structure of layer silicates. Pp. 1-123 in: Crystal Structures of Clay Minerals and their X-ray Identification. (G.W. Brindley and G. Brown, editors). Monograph, 5. London: Mineralogical Society.Google Scholar
  6. Bao, Z., & Zhao, Z. (2008). Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 13, 519–535.CrossRefGoogle Scholar
  7. Bish, D. L. (1993). Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738–744.CrossRefGoogle Scholar
  8. Bermúdez-Lugo, O. (2014) Angola and Namibia, Minerals Year Book. U.S. Geological Survey.Google Scholar
  9. De Carvalho, H., Tassinari, C., Alves, P., Guimaraes, F., & Simoes, M. C. (2000). Geochronological review of the Precambrian in western Angola: Links with Brazil. Journal of African Earth Sciences, 31, 383–402.CrossRefGoogle Scholar
  10. Detellier, C., & Schoonheydt, R. A. (2014). From platy kaolinite to nanorolls. Elements, 10, 201–206.CrossRefGoogle Scholar
  11. Dedzo, G. K. & Detellier, C. (2016). Functional nanohybrid materials derived from kaolinite. Applied Clay Science, 130, 33–39.CrossRefGoogle Scholar
  12. Dill, H. G. (2016). Kaolin: Soil, rock and ore. From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16–129.CrossRefGoogle Scholar
  13. Ekosse, G.-I. (2000). The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applications. Applied clay science, 16, 301–320.CrossRefGoogle Scholar
  14. Ekosse, G.-I. (2010). Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. Applied Clay Science, 50, 212–236.CrossRefGoogle Scholar
  15. Elliot, W. C., Gardner, D. J., Malla, P., & Riley, E. (2018). A new look at the occurrences of the rare-earth elements in the Georgia Kaolins. Clays and Clay Minerals, 66(3), 245–260.Google Scholar
  16. Flanagan, M. D. (2016). Clays in Mineral Commodity summaries (Vol. 50). U.S. Geological Survey.Google Scholar
  17. Galán, E. (2006). Genesis of clay minerals, Pp, 1129–1162 in: Handbook of Clay Science. (F. Bergaya, B.K.G. Theng, and G. Lagaly editors) Developments in Clay Science 1. Elsevier, Amsterdam.Google Scholar
  18. Galán, E., Aparicio, P., Fernández-Caliani, J.C., Miras, A., G. Márquez, M, Fallick, A. and Clauer, N. (2016) New insights on mineralogy and genesis of kaolin deposits: The Burela kaolin deposit (Northwestern Spain). Applied Clay Science, 131, 14-26.Google Scholar
  19. Gomes, C., Velho, J. A., & Guimaraes, F. (1994). Kaolin deposit of Mevaiela (Angola) alteration product of anorthosite: assessment of kaolin potentialities for applications in paper. Applied Clay Science, 9, 97–106.CrossRefGoogle Scholar
  20. Guggenheim, S., Adams, J. M., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A., Formoso, M. L. L., Galán, E., Kogure, T., & Stanjek, H. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’etude des Argiles, nomenclature committee for 2006. Clay Minerals, 41, 863–877.CrossRefGoogle Scholar
  21. Hanson, R.E. (2003). Proterozoic geochronology and tectonic evolution of southern Africa. Pp. 427–463 in: Proterozoic East Gondwana: Supercontinent Assembly and Breakup (M. Yoshida, B.F. Windley, and S. Dasgupta, editors). Geological Society of London, Special Publications, 206, 427-463.Google Scholar
  22. Heckroodt, R. O. (1991). Clay and clay materials in South Africa. Journal of the South African Institute of Mining and Metallurgy, 91, 343–363.Google Scholar
  23. Hinckley, D. N. (1963). Variability in "crystallinity" values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229–235.CrossRefGoogle Scholar
  24. Jelsma, H., Perrit, S.H., Armstrong, R.A., & Ferreira, H.F. (2011). SHRIMP U-Pb zircon geochronology of basement rocks of the Angolan Shield, western Angola. In: Proceedings of the 23 rd CAG, Johannesburg. Council for Geoscience, Pretoria 203.Google Scholar
  25. Kadir, S., & Kart, F. (2009). The occurrence and origin of the Sögüt kaolinite deposits in the Paleozoic Saricayaka granite-granodiorite complexes and overlying Neogene sediments (Bilecik, northwestern Turkey). Clays and Clay Minerals, 57, 311–329.CrossRefGoogle Scholar
  26. Laufer, F., Yariv, S., & Steinberg, M. (1984). The adsorption of quadrivalent cerium by kaolinite. Clay Minerals, 19, 137–149.CrossRefGoogle Scholar
  27. Liu, X., Liu, X., & Hu, Y. (2015). Investigation of the thermal behaviour and decomposition kinetics of kaolinite. Clay Minerals, 50, 199–209.CrossRefGoogle Scholar
  28. López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.CrossRefGoogle Scholar
  29. MacKenzie, R. C. (1957). The differential thermal investigation of Clays (456 pp). London: Mineralogical Society (Clay Minerals Group).Google Scholar
  30. Mansa, R., Ngassa Piegang, G. B., & Detellier, C. (2017). Kaolinite aggregation in book-like structures from non-aqueous media. Clays and Clay Minerals, 65, 193–205.CrossRefGoogle Scholar
  31. Marques, M. M. (1977). Esboço das grandes unidades geomorfológicas de Angola (2ª aproximação). Instituto de Investigaçao Cientifica Tropical. Garcia de Orta, Sérvicio Geologico, Lisboa, 2(1), 41–43.Google Scholar
  32. Mayer, A., Hofmann, A. W., Sinigoi, S., & Morais, E. (2004). Mesoproterozoic Sm-Nd and U-Pb ages for the Kunene Anorthosite Complex of SW Angola. Precambrian Research, 133, 187–206.CrossRefGoogle Scholar
  33. McCourt, S., Armstrong, R. A., Jelsma, H., & Mapeo, R. B. M. (2013). New U-Pb SHRIMP ages from the Lubango region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton. Africa. Journal of the Geological Society of London, 170, 353–363.CrossRefGoogle Scholar
  34. McDonough, W. F., & Sun, S. S. (1995). The composition of the earth. Chemical Geology, 120, 223–225.CrossRefGoogle Scholar
  35. Montenegro de Andrade, M. (1954). Rochas graníticas de Angola. Memórias, série geológica IV. Ministério do Ultramar, 464 pp.Google Scholar
  36. Moore, D.M. & Reynolds, R.C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, 332 pp.Google Scholar
  37. Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 39–49.CrossRefGoogle Scholar
  38. Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, palygorskite: a general overview. Applied Clay Science, 17, 207–221.CrossRefGoogle Scholar
  39. Nesbitt, H. W. & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.CrossRefGoogle Scholar
  40. Nkalih Mefire, A., Njoya, A., Yongue Fouateu, R., Mache, J. R., Tapon, N. A., Nzeukou Nzeugang, A., Melo Chinje, U., Pilate, P., Flament, P., Siniapkine, S., Ngono, A., & Fagel, N. (2015). Occurrences of kaolin in Koutaba (west Cameroon): Mineralogical and physicochemical characterization for use in ceramic products. Clay Minerals, 50, 593–606.CrossRefGoogle Scholar
  41. Nguie, G., Dedzo, G.K. & Detellier, C. (2016). Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials. Dalton Transactions, 45.Google Scholar
  42. Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J., & Martin, F. (2006). Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125–140.CrossRefGoogle Scholar
  43. Nyakairu, G. W. A., & Koeberl, C. (2001). Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochemical Journal, 35, 13–28.CrossRefGoogle Scholar
  44. Nyakairu, G. W. A., Koeberl, C., & Kurzweil, H. (2001). The Buwambo kaolin deposit in central Uganda: Mineralogical and chemical composition. NOTE. Geochemical Journal, 35, 245–256.CrossRefGoogle Scholar
  45. Petschick, R. (2004). MacDiff 4.2.5. http://servermac.geologie.uni-frankfurt.de/Rainer.html.
  46. Phipps, J. S. (2014). Engineering minerals for performance applications: an industrial perspective. Clay Minerals, 49, 1–16.CrossRefGoogle Scholar
  47. Pruett, R. J. (2016). Kaolin deposits and their uses: Northern Brazil and Georgia, USA. Applied Clay Science, 131, 3–13.CrossRefGoogle Scholar
  48. Rudnick, R.L. & Gao, R. (2003). Composition of the continental crust. Pp. 1-64 in: The Crust (R.L. Rudnick, editor). Treatise of Geochemistry, 3. Elsevier-Pergamon, Oxford, UK.Google Scholar
  49. Saikia, N., Bharali, D., Sengupta, P., Bordolo, D., Goswamee, R., Saikia, P., & Borthakur, P. C. (2003). Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93–103.CrossRefGoogle Scholar
  50. Sanematsu, K. & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type Rare Earth Element deposits. Reviews in Economic Geology, 18, 55–79.Google Scholar
  51. Savianno, G., Violo, M., Pieruccini, U., & Lopes da Silva, E. T. (2005). Kaolin deposits from the northern sector of the Cunene Anorthosite Complex (southern Angola). Clays and Clay Minerals, 53, 674–685.CrossRefGoogle Scholar
  52. Schroeder, P. A., & Erickson, G. (2014). Kaolin: From Ancient porcelains to nanocomposites. Elements, 10, 177–182.CrossRefGoogle Scholar
  53. Silva, M.V.S., (1973). Carta Geologica de Angola. Folha N 207 Gungo. Scale 1:100 000.Google Scholar
  54. Silva, A.T.S.F. & Simões, M.V.C. (1980/1981). Geologia da região de Caluquembe (Angola), Livro de Homenagem ao Professor Doutor Carlos Teixeira pela sua jubilação, Bol. Soc. Geol. Portugal, 22, 363–375.Google Scholar
  55. Stoch, L. (1974). Mineraly Ilaste (‘Clay Minerals’) (pp. 186–193). Warsaw: Geological Publishers.Google Scholar
  56. Taylor, S. R., & McLennan, S. H. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.CrossRefGoogle Scholar
  57. Thorez, J. (1975). Phyllosilicates and clay minerals. A laboratory handbook for their X-ray diffraction analysis (p. 580). France: Lelotte (Disno).Google Scholar
  58. TOPAS (2009). General Profile and Structure Analysis Software for Powder Diffraction Data, version 4.2, Bruker AXS Gmbh, Karlsruhe, Germany, 2009.Google Scholar
  59. Wilson, J. R., Halls, C., & Spiro, B. (1997). A comparison between the China clay deposits of China and Corwall. Proceedings of the Ussher Society, 9, 195–200.Google Scholar
  60. Xiao, Y., Huang, L., Long, Z., Feng, Z., & Wang, L. (2016). Adsorption ability of rare earth elements on clay minerals and its practical performance. Journal of Rare Earths, 34(5), 543–548.CrossRefGoogle Scholar
  61. Young, R. A. & Hewat, A. W. (1988). Verification of the triclinic crystal structure of kaolinite. Clays and Clay Minerals, 36, 225–232.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2019
AE: Chun-Hui Zhou

Authors and Affiliations

  • Esperança Tauler
    • 1
  • Jingyao Xu
    • 1
    Email author
  • Marc Campeny
    • 1
    • 2
  • Sandra Amores
    • 1
  • Joan Carles Melgarejo
    • 1
  • Salvador Martinez
    • 1
  • Antonio O. Gonçalves
    • 3
  1. 1.Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la TerraUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de MineralogiaMuseu de Ciències Naturals de BarcelonaBarcelonaSpain
  3. 3.Departamento de GeologiaUniversidade Agostinho NetoLuandaAngola

Personalised recommendations