Clays and Clay Minerals

, Volume 67, Issue 3, pp 190–208 | Cite as

The Interaction between Surfactants and Montmorillonite and its Influence on the Properties of Organo-Montmorillonite in Oil-Based Drilling FluIDS

  • Guanzheng Zhuang
  • Zepeng ZhangEmail author
  • Shanmao Peng
  • Jiahua Gao
  • Francisco A. R. Pereira
  • Maguy JaberEmail author


The increasing demands for oil and gas and associated difficult drilling operations require oil-based drilling fluids that possess excellent rheological properties and thermal stability. The objective of the present work was to investigate the rheological properties and thermal stability of organo-montmorillonite (OMnt) modified with various surfactants and under various loading levels in oil-based drilling fluids, as revealed by the interaction between organic surfactants and montmorillonite. The influence of the structural arrangement of surfactants on the thermal stability of organo-montmorillonite (OMnt) in oil-based drilling fluids was also addressed. OMnt samples were prepared in aqueous solution using surfactants possessing either a single long alkyl chain two long alkyl chains. OMnt samples were characterized by X-ray diffraction, high-resolution transmission electron microscopy, thermal analysis, and X-ray photoelectron spectroscopy. Organic surfactants interacted with montmorillonite by electrostatic attraction. The arrangements of organic surfactants depended on the number of long alkyl chains and the geometrical shape of organic cations. In addition to the thermal stability of surfactants, intermolecular interaction also improved the thermal stability of OMnt/oil fluids. A tight paraffin-type bilayer arrangement contributed to the excellent rheological properties and thermal stability of OMnt/oil fluids. The deterioration of rheological properties of OMnt/oil fluids at temperatures up to 200°C was due mainly to the release of interlayer surfactants into the oil.


Arrangement Oil-Based Muds Organo-Clay Rheological Properties Thermal Behavior 



This work was supported financially by the Fundamental Research Funds for Central Universities (China). The support provided by the China Scholarship Council (CSC) during the visit of Guanzheng Zhuang (No. 201706400010) to Sorbonne Université is acknowledged.


  1. Bergaya, F., Jaber, M., & Lambert, J. F. (2012). Clays and Clay Minerals as Layered Nanofillers for (Bio)polymers (pp. 41–75). London: Springer.Google Scholar
  2. Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 46–51.CrossRefGoogle Scholar
  3. Bowen, J. P., Pathiaseril, A., Profeta, S., Jr., & Allinger, N. L. (1987). New molecular mechanics (MM2) parameters for ketones and aldehydes. The Journal of Organic Chemistry, 52(23), 5162–5166.CrossRefGoogle Scholar
  4. Brigatti, M. F., Galán, E., & Theng, B. K. G. (2013). Structures and mineralogy of clay minerals. In F. Bergaya & G. Lagaly (Eds.), Developments in Clay Science (Vol. 5, pp. 21–81). Netherlands: Elesvier.Google Scholar
  5. Caenn, R. & Chillingar, G. V. (1996). Drilling fluids: State of the art. Journal of Petroleum Science and Engineering, 14, 221–230.CrossRefGoogle Scholar
  6. Caenn, R., Darley, H. C., & Gray, G. R. (2011). Composition and properties of drilling and completion fluids. Houston: Gulf professional publishing.Google Scholar
  7. Chen, D., Zhu, J. X., Yuan, P., & Yang, S. J. (2008). Preparation and characterization of anion-cation surfactants modified montmorillonite. Journal of Thermal Analysis and Calorimetry, 94, 841–848.CrossRefGoogle Scholar
  8. Dino, D., & Thompson, J. (2002). U.S. patent no. 6,462,096. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  9. Favre, H., & Lagaly, G. (1991). Organo-bentonites with quaternary alkylammonium ions. Clay Minerals, 26, 19–32.CrossRefGoogle Scholar
  10. Frantz, E. B. (2014). U.S. patent no. 0,011,712. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  11. Greene-Kelly, R. (1957). The montmorillonite minerals. In R. C. Mackenzie (Ed.), The Differential Thermal Investigation of Clays (pp. 140–164). London: Mineral Society.Google Scholar
  12. Guégan, R., Giovanela, M., Warmont, F., & Motelica-Heino, M. (2015). Nonionic organoclay: A ‘swiss army knife’ for the adsorption of organic micro-pollutants? Journal of Colloid and Interface Science, 437, 71–79.CrossRefGoogle Scholar
  13. Gunawan, N. S., Indraswati, N., Ju, Y. H., Soetaredjo, F. E., Ayucitra, A., & Ismadji, S. (2010). Bentonites modified with anionic and cationic surfactants for bleaching of crude palm oil. Applied Clay Science, 47, 462–464.CrossRefGoogle Scholar
  14. He, H., Ding, Z., Zhu, J., Yuan, P., Xi, Y., Yang, D., & Frost, R. L. (2005). Thermal characterization of surfactant-modified montmorillonites. Clays and Clay Minerals, 53, s319.CrossRefGoogle Scholar
  15. He, H., Zhou, Q., Frost, R. L., Wood, B. J., Duong, L. V., & Kloprogge, J. T. (2007). An X-ray photoelectron spectroscopy study of HDTMAB distribution within organoclays. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 66, 1180–1188.Google Scholar
  16. He, H., Ma, Y., Zhu, J., Yuan, P., & Qing, Y. (2010). Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Applied Clay Science, 48, 67–72.CrossRefGoogle Scholar
  17. Hedley, C. B., Yuan, G., & Theng, B. K. G. (2007). Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. Applied Clay Science, 35, 180–188.CrossRefGoogle Scholar
  18. Hermoso, J., Martinez-Boza, F., & Gallegos, C. (2014). Influence of viscosity modifier nature and concentration on the viscous flow behavior of oil-based drilling fluids at high pressure. Applied Clay Science, 87, 14–21.CrossRefGoogle Scholar
  19. Hermoso, J., Martinez-Boza, F., & Gallegos, C. (2015). Influence of aqueous phase volume fraction, organoclay concentration and pressure on invert-emulsion oil muds rheology. Journal of Industrial and Engineering Chemistry, 22, 341–349.CrossRefGoogle Scholar
  20. Hermoso, J., Martínez-Boza, F. J., & Gallegos, C. (2017). Organoclay influence on high pressure-high temperature volumetric properties of oil-based drilling fluids. Journal of Petroleum Science and Engineering, 151, 13–23.CrossRefGoogle Scholar
  21. Jaber, M., Miehé-Brendlé, J., & Dred, R. L. (2002). Mercaptopropyl Al-Mg phyllosilicate: Synthesis and characterization by XRD, IR, and NMR. Chemistry Letters, 80, 954–955.CrossRefGoogle Scholar
  22. Jaber, M., Georgelin, T., Bazzi, H., Costatorro, F., & Clodic, G. (2014). Selectivities in adsorption and peptidic condensation in the (arginine and glutamic acid)/montmorillonite clay system. Journal of Physical Chemistry C, 118, 25447–25455.CrossRefGoogle Scholar
  23. Khodja, M., Canselier, J. P., Bergaya, F., Fourar, K., Khodja, M., Cohaut, N., & Benmounah, A. (2010). Shale problems and water-based drilling fluid optimisation in the hassi messaoud algerian oil field. Applied Clay Science, 49, 383–393.CrossRefGoogle Scholar
  24. Kogure, T. (2013). Electron microscopy. In F. Bergaya & G. Lagaly (Eds.), Developments in Clay Science (pp. 275–317, Vol. 5). Netherlands: Elsevier.Google Scholar
  25. Lagaly, G. (1976). Kink-block and gauche-block structures of bimolecular films. Angewandte Chemie International Edition, 15, 575–586.CrossRefGoogle Scholar
  26. Lagaly, G. (1981). Characterization of clays by organic compounds. Clay Minerals, 16(1), 1–21.CrossRefGoogle Scholar
  27. Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22, 43–51.CrossRefGoogle Scholar
  28. Lagaly, G., Ogawa, M., & Dékány, I. (2013) Clay mineral–organic interactions. In F. Bergaya, B.K.G. Theng, and G. Lagaly (Eds.) Developments in Clay Science, (pp. 435–505, vol. 5). Amsterdam; Elsevier.Google Scholar
  29. Lee, S.M. and Tiwari, D. (2012) Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science, 59–60, 84–102.Google Scholar
  30. Paiva, L. B. D., Morales, A. R., & Díaz, F. R. V. (2008). Organoclays: Properties, preparation and applications. Applied Clay Science, 42, 8–24.CrossRefGoogle Scholar
  31. Ratkievicius, L. A., Da Cunha Filho, F. J. V., Neto, E. L. D. B., & Santanna, V. C. (2017). Modification of bentonite clay by a cationic surfactant to be used as a viscosity enhancer in vegetable-oil-based drilling fluid. Applied Clay Science, 135, 307–312.CrossRefGoogle Scholar
  32. Sarier, N., Onder, E., & Ersoy, S. (2010). The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 371, 40–49.Google Scholar
  33. Schampera, B., Solc, R., Woche, S. K., Mikutta, R., Dultz, S., Guggenberger, G., & Tunega, D. (2015). Surface structure of organoclays as examined by X-ray photoelectron spectroscopy and molecular dynamics simulations. Clay Minerals, 50, 353–367.Google Scholar
  34. Shen, Y. H. (2001). Preparations of organobentonite using nonionic surfactants. Chemosphere, 44, 989–995.CrossRefGoogle Scholar
  35. Vaia, R. A., Teukolsky, R. K., & Giannelis, E. P. (1994). Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 1017–1022.CrossRefGoogle Scholar
  36. Wu, S., Zhang, Z., Wang, Y., Liao, L., & Zhang, J. (2014). Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites. Materials Research Bulletin, 59, 59–64.CrossRefGoogle Scholar
  37. Zhang, Z., Liao, L., & Xia, Z. (2010). Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Applied Clay Science, 50, 576–581.CrossRefGoogle Scholar
  38. Zhang, Z., Zhang, J., Liao, L., & Xia, Z. (2013). Synergistic effect of cationic and anionic surfactants for the modification of Ca-montmorillonite. Materials Research Bulletin, 48, 1811–1816.CrossRefGoogle Scholar
  39. Zhu, J., Qing, Y., Wang, T., Zhu, R., Wei, J., Tao, Q., Yuan, P., & He, H. (2011). Preparation and characterization of zwitterionic surfactant-modified montmorillonites. Journal of Colloid and Interface Science, 360, 386–392.CrossRefGoogle Scholar
  40. Zhuang, G., Zhang, Z., Guo, J., Liao, L., & Zhao, J. (2015). A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Applied Clay Science, 104, 18–26.CrossRefGoogle Scholar
  41. Zhuang, G., Zhang, Z., Sun, J., & Liao, L. (2016). The structure and rheology of organo-montmorillonite in oil-based system aged under different temperatures. Applied Clay Science, 124, 21–30.CrossRefGoogle Scholar
  42. Zhuang, G., Zhang, H., Wu, H., Zhang, Z., & Liao, L. (2017a). Influence of the surfactants' nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Applied Clay Science, 135, 244–252.CrossRefGoogle Scholar
  43. Zhuang, G., Zhang, Z., Gao, J., Zhang, X., & Liao, L. (2017b). Influences of surfactants on the structures and properties of organo-palygorskite in oil-based drilling fluids. Microporous and Mesoporous Materials, 244, 37–46.CrossRefGoogle Scholar
  44. Zhuang, G., Zhang, Z., Jaber, M., Gao, J., & Peng, S. (2017c). Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. Journal of Industrial and Engineering Chemistry, 56, 248–257.CrossRefGoogle Scholar
  45. Zhuang, G., Gao, J., Chen, H., & Zhang, Z. (2018). A new one-step method for physical purification and organic modification of sepiolite. Applied Clay Science, 153, 1–8.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2019
AE: Runliang Zhu

Authors and Affiliations

  • Guanzheng Zhuang
    • 1
  • Zepeng Zhang
    • 1
    Email author
  • Shanmao Peng
    • 1
  • Jiahua Gao
    • 1
  • Francisco A. R. Pereira
    • 2
    • 3
  • Maguy Jaber
    • 2
    Email author
  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of GeosciencesBeijingPeople’s Republic of China
  2. 2.Laboratoire d’Archéologie Moléculaire et Structurale (LAMS)Sorbonne UniversitéParis Cedex 05France
  3. 3.Chemistry Department, Science and Technology CenterUniversidade Estadual da ParaíbaCampina GrandeBrazil

Personalised recommendations