Advertisement

Clay Minerals in Skin Drug Delivery

  • César ViserasEmail author
  • Esperanza Carazo
  • Ana Borrego-Sánchez
  • Fátima García-Villén
  • Rita Sánchez-Espejo
  • Pilar Cerezo
  • Carola Aguzzi
Article
  • 8 Downloads

Abstract

Clays have played an important role in medicine since the dawn of mankind and are still applied widely as active ingredients and/or excipients in pharmaceutical formulations. Due to their outstanding properties of large retention capacity, swelling and rheological properties, and relative low cost, they have been used widely as advanced carriers for the efficient delivery of drugs by modifying their release (rate and/or time), increasing the stability of the drug, improving the dissolution profile of a drug, or enhancing their intestinal permeability. In addition, recent studies have shed new light on the potential of clay minerals in the nanomedicine field due to their biocompatibility, beneficial effects of clay nanoparticles on cellular adhesion, proliferation, and differentiation. Use as active ingredients and excipients are exerted via the oral and topical administration pathways. Skin drug delivery represents an attractive alternative to the oral route, providing local and/or systemic drug delivery. Due to their complex structures, however, most drugs penetrate the human skin only with difficulty. Enormous efforts have been invested, therefore, in developing advanced drug delivery systems able to overcome the skin barrier. Most strategies require the use of singular materials with new properties. In particular, and on the basis of their inherent properties, clay minerals are ideal candidates for the development of intelligent skin drug delivery systems. In this article, the properties of clay materials and their use in the skin-addressed pharmaceutical field are reviewed. A brief introduction of skin physiology and biopharmaceutical features of penetration by a drug through the skin layers is also included and is designed to shed light on the optimum properties of ideal nanosystems for advanced skin drug delivery. Special attention is devoted to the pharmacological functions of clays and their biomedical applications in pelotherapy, wound healing, regenerative medicine, antimicrobial, and dermocosmetics.

Keywords

Skin Antimicrobials Clay Minerals Dermocosmetics Pelotherapy Regenerative Medicine Skin Engineering Wound Healing 

References

  1. Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, 36, 22–36.CrossRefGoogle Scholar
  2. Aguzzi, C., Sánchez-Espejo, R., Cerezo, P., Machado, J., Bonferoni, C., Rossi, S., & Viseras, C. (2013). Networking and rheology of concentrated clay suspensions “matured” in mineral medicinal water. International Journal of Pharmaceutics, 453, 473–479.CrossRefGoogle Scholar
  3. Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., & Viseras, C. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 113, 152–157.CrossRefGoogle Scholar
  4. Aguzzi, C., Sandri, G., Cerezo, P., Carazo, E., and Viseras, C. (2016) Health and medical applications of tubular clay minerals. Developments in clay science (pp. 708–725, Vol. 7). Amsterdam: Elsevier.Google Scholar
  5. Alexander, P. (1973) In: R. G. Harry (Ed.), Harry's Cosmeticology. The principles and practice of modern cosmetics, Vol. I. 6th ed. London: Leonard Hill Books. (a) Sunscreen, Suntan and Sunburn Preparations, 328 pp.Google Scholar
  6. Ambrogi, V., Pietrella, D., Nocchetti, M., Casagrande, S., Moretti, V., De Marco, S., & Ricci, M. (2017). Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. Journal of Colloid and Interface Science, 491, 265–272.CrossRefGoogle Scholar
  7. Aulton, M. E., & Taylor, K. M. (Eds.). (2017). Aulton’s pharmaceutics EBook: The design and manufacture of medicines. Amsterdam: Elsevier Health Sciences.Google Scholar
  8. Awad, M. E., López-Galindo, A., El-Rahmany, M. M., El-Desoky, H. M., & Viseras, C. (2017). Characterization of Egyptian kaolins for health-care uses. Applied Clay Science, 135, 176–189.CrossRefGoogle Scholar
  9. Barry, B. W. (1983). Dermatological Formulations (pp. 49–94). New York: Marcel Dekker.Google Scholar
  10. Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., López-Galindo, A., & Viseras, C. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 49, 205–212.CrossRefGoogle Scholar
  11. Beringhs, A. O. R., Rosa, J. M., Stulzer, H. K., Budal, R. M., & Sonaglio, D. (2013). Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design. AAPS PharmSciTech, 14, 445–455.CrossRefGoogle Scholar
  12. Bonferoni, M. C., Cerri, G., De’Gennaro, M., Juliano, C., & Caramella, C. (2007). Zn2+-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy: in-vitro characterization and preliminary formulation studies. Applied Clay Science, 36, 95–102.CrossRefGoogle Scholar
  13. Bonifacio, M. A., Gentile, P., Ferreira, A. M., Cometa, S., & De Giglio, E. (2017). Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers, 163, 280–291.CrossRefGoogle Scholar
  14. British Chambers of Commerce (BCC) 2016. Annual Economic Report.Google Scholar
  15. British Pharmacopoeia Commission (2018) British Pharmacopoeia. London: TSO.Google Scholar
  16. Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16, 143–155.CrossRefGoogle Scholar
  17. Carazo, E., Borrego-Sánchez, A., García-Villén, F., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., and Viseras, C. (2018) Advanced inorganic nanosystems for skin drug delivery. The Chemical Record (pp. 891–899).  https://doi.org/10.1002/tcr.201700061 CrossRefGoogle Scholar
  18. Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21, 155–163.CrossRefGoogle Scholar
  19. Carretero, M.I., Gomes, C., and Tateo, F. (2006). Clays and human health. In F. Bergaya, B.K.G. Theng, and G. Lagaly (Eds.). Handbook of clay science (pp. 717–741). Developments in Clay Science, 1, Elsevier, Amsterdam.Google Scholar
  20. Carter, H.M. (1940) Fingernail Cleaning Composition. U.S. Patent No. 2,197,630. Washington DC: U.S. Patent and Trademark Office.Google Scholar
  21. Cerri, G., de’Gennaro, M., Bonferoni, M.C., Caramella, C., and Juliano, C. (2006) Zn exchanged clinoptilolite rich rock as carrier for erythromycin in antiacne therapy: an in vitro evaluation. In: Book of Abstracts of the 7th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Socorro, New Mexico, USA.Google Scholar
  22. Cerri, G., De'Gennaro, M., Bonferoni, M. C., & Caramella, C. (2004). Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Applied Clay Science, 27, 141–150.CrossRefGoogle Scholar
  23. Chen, H., Ye, Z., Sun, L., Li, X., Shi, S., Hu, J., & Wang, B. (2018). Synthesis of chitosan-based micelles for pH responsive drug release and antibacterial application. Carbohydrate Polymers, 189, 65–71.CrossRefGoogle Scholar
  24. Cornejo, J., Galán, E., and Ortega, M. (1990) Las arcillas en formulaciones farmacéuticas. Conferencias de IX y X Reuniones de la Sociedad Española de Arcillas, 51–68.Google Scholar
  25. Couto, A., Fernandes, R., Cordeiro, M. N. S., Reis, S. S., Ribeiro, R. T., & Pessoa, A. M. (2014). Dermic diffusion and stratum corneum: a state of the art review of mathematical models. Journal of Controlled Release, 177, 74–83.CrossRefGoogle Scholar
  26. Da Silva, G. R., Da Silva-Cunha, A., Vieira, L. C., Silva, L. M., Ayres, E., Oréfice, R. L., & Behar-Cohen, F. (2013). Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. Journal of Materials Science: Materials in Medicine, 24, 1309–1317.Google Scholar
  27. Dário, G. M., da Silva, G. G., Gonçalves, D. L., Silveira, P., Junior, A. T., Angioletto, E., & Bernardin, A. M. (2014). Evaluation of the healing activity of therapeutic clay in rat skin wounds. Materials Science and Engineering: C, 43, 109–116.CrossRefGoogle Scholar
  28. De Vos, P. (2010). European materia medica in historical texts: longevity of a tradition and implications for future use. Journal of Ethnopharmacology, 132, 28–47.CrossRefGoogle Scholar
  29. Demir, A. K., Elçin, A. E., & Elçin, Y. M. (2018). Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Materials Science and Engineering: C, 89, 8–14.CrossRefGoogle Scholar
  30. Fakhrullin, R. F., & Lvov, Y. M. (2016). Halloysite clay nanotubes for tissue engineering. Future Medicine, 11, 2243–2246.Google Scholar
  31. Falkinham, J. O., Wall, T. E., Tanner, J. R., Tawaha, K., Alali, F. Q., Li, C., & Oberlies, N. H. (2009). Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan's red soils. Applied and Environmental Microbiology, 75, 2735–2741.CrossRefGoogle Scholar
  32. Fernández-González, M. V., Martín-García, J. M., Delgado, G., Párraga, J., Carretero, M. I., & Delgado, R. (2017). Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa (Granada, Spain). Applied Clay Science, 135, 465–474.CrossRefGoogle Scholar
  33. Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals, 56, 751–760.CrossRefGoogle Scholar
  34. Friedlander, L. R., Puri, N., Schoonen, A. A., & Karzai, W. (2015). The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals. Journal of Water and Health, 13, 42–53.CrossRefGoogle Scholar
  35. Gabriel, D.M. (1973) Vanishing and foundation creams in Harry’s Cosmeticology (6th ed.), The principles and practice of modern cosmetics (p. 83, vol. I). London: Leonard Hill Books.Google Scholar
  36. Ghadiri, M., Chrzanowski, W., Lee, W. H., & Rohanizadeh, R. (2014). Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 4, 35332–35343.CrossRefGoogle Scholar
  37. Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5, 29467–29481.CrossRefGoogle Scholar
  38. Gomes, C., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., & Delgado, R. (2013). Peloids and pelotherapy: historical evolution, classification and glossary. Applied Clay Science, 75, 28–38.CrossRefGoogle Scholar
  39. Hamilton, A. R., Hutcheon, G. A., Roberts, M., & Gaskell, E. E. (2014). Formulation and antibacterial profiles of clay–ciprofloxacin composites. Applied Clay Science, 87, 129–135.CrossRefGoogle Scholar
  40. Haraguchi, K., Takehisa, T., & Ebato, M. (2006). Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 7, 3267–3275.CrossRefGoogle Scholar
  41. Iannuccelli, V., Maretti, E., Bellini, A., Malferrari, D., Ori, G., Montorsi, M., & Leo, E. (2018). Organo-modified bentonite for gentamicin topical application: interlayer structure and in vivo skin permeation. Applied Clay Science, 158, 158–168.CrossRefGoogle Scholar
  42. Ijiri, H., Sato, K., Suzuki, M., and Hasegawa, Y. (2015) U.S. Patent No. 9,114,266. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  43. Katti, K. S., Katti, D. R., & Dash, R. (2008). Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomedical Materials, 3, 034122.CrossRefGoogle Scholar
  44. Khiari, I., Mefteh, S., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., & Viseras, C. (2014). Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 101, 141–148.CrossRefGoogle Scholar
  45. Kommireddy, D. S., Ichinose, I., Lvov, Y. M., & Mills, D. K. (2005). Nanoparticle multilayers: surface modification for cell attachment and growth. Journal of Biomedical Nanotechnology, 1, 286–290.CrossRefGoogle Scholar
  46. Lam, P. L., Lee, K. K. H., Wong, R. S. M., Cheng, G. Y. M., Bian, Z. X., Chui, C. H., & Gambari, R. (2018). Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Critical Reviews in Microbiology, 44, 40–78.CrossRefGoogle Scholar
  47. Liu, M., Dai, L., Shi, H., Xiong, S., & Zhou, C. (2015). In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering: C, 49, 700–712.CrossRefGoogle Scholar
  48. Liu, M., Zhang, Y., Wu, C., Xiong, S., & Zhou, C. (2012). Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. International Journal of Biological Macromolecules, 51, 566–575.CrossRefGoogle Scholar
  49. Lizarbe, M. A., Olmo, N., & Gavilanes, J. G. (1987). Outgrowth of fibroblasts on sepiolite-collagen complex. Biomaterials, 8, 35–37.CrossRefGoogle Scholar
  50. López-Galindo, A. and Viseras, C. (2004) Pharmaceutical and cosmetic applications of clays. In Interface science and technology (pp. 267–289, Vol. 1). Elsevier.Google Scholar
  51. López-Galindo, A., Viseras, C., Aguzzi, C., and Cerezo, P. (2011) Pharmaceutical and cosmetic uses of fibrous clays. In F. Bergaya & G. Lagaly (Eds), Handbook of clay science (pp. 794 299–324), 2nd edition. Developments in clay science, 3, Elsevier, Amsterdam.Google Scholar
  52. López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.CrossRefGoogle Scholar
  53. Macgregor, A. (2013) Medicinal terra sigillata: a historical, geographical and typological review. In C. J. Duffin, R. T. J. Moody & C. Gardner-Thorpe (Eds), A history of geology and medicine (pp. 113–136). Special Publications, 375. London: Geological Society.Google Scholar
  54. Mantle, D., Gok, M. A., & Lennard, T. W. (2001). Adverse and beneficial effects of plant extracts on skin and skin disorders. Adverse drug reactions and toxicological reviews, 20, 89–103.Google Scholar
  55. Mattioli, M., Giardini, L., Roselli, C., & Desideri, D. (2015). Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Applied Clay Science, 119, 449–454.CrossRefGoogle Scholar
  56. Mauro, N., Chiellini, F., Bartoli, C., Gazzarri, M., Laus, M., Antonioli, D., & Ferruti, P. (2017). RGD-mimic polyamidoamine–montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 11, 2164–2175.CrossRefGoogle Scholar
  57. Medicamentarius, C. (1866). Pharmacophea Française (pp. 48–49). París: Jean-Baptiste Baillière.Google Scholar
  58. Mieszawska, A. J., Llamas, J. G., Vaiana, C. A., Kadakia, M. P., Naik, R. R., & Kaplan, D. L. (2011). Clay enriched silk biomaterials for bone formation. Acta Biomaterialia, 7, 3036–3041.CrossRefGoogle Scholar
  59. Ministerio de Sanidad y Consumo (2015) Agencia Española de Medicamentos y Productos Sanitarios (Eds). Real Farmacopea Española, 5ª Edición.Google Scholar
  60. Mishra, R. K., Ramasamy, K., Lim, S. M., Ismail, M. F., & Majeed, A. B. A. (2014). Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. Journal of Materials Science: Materials in Medicine, 25, 1925–1939.Google Scholar
  61. Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—a review. International Journal of Pharmaceutics, 534, 213–219.CrossRefGoogle Scholar
  62. Morrison, K. D., Misra, R., & Williams, L. B. (2016). Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Scientific Reports, 6, 19043.CrossRefGoogle Scholar
  63. Mousa, M., Evans, N. D., Oreffo, R. O., & Dawson, J. I. (2018). Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials, 159, 204–214.CrossRefGoogle Scholar
  64. Mukhopadhyay, K., Rangan, K.K., & Sudarshan, T.S. (2018). Clay composites and their applications. U.S. Patent Application No. 10/046,079.Google Scholar
  65. Naumenko, E. A., Guryanov, I. D., Yendluri, R., Lvov, Y. M., & Fakhrullin, R. F. (2016). Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale, 8, 7257–7271.CrossRefGoogle Scholar
  66. Ng, K. W., & Lau, W. M. (2015). Skin deep: the basics of human skin structure and drug penetration. In N. Dragicevic & H. I. Maibach (Eds.), Percutaneous penetration enhancers chemical methods in penetration enhancement (pp. 3–11). Berlin, Heidelberg: Springer.Google Scholar
  67. Ninan, N., Muthiah, M., Park, I. K., Wong, T. W., Thomas, S., & Grohens, Y. (2015). Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polymer Reviews, 55, 453–490.CrossRefGoogle Scholar
  68. Noori, S., Kokabi, M., & Hassan, Z. M. (2018). Poly (vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. Journal of Applied Polymer Science, 135(21)  https://doi.org/10.1002/app.46311.CrossRefGoogle Scholar
  69. Olad, A., & Azhar, F. F. (2014). The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceramics International, 40, 10061–10072.CrossRefGoogle Scholar
  70. Olmo, N., Lizarbe, M. A., & Gavilanes, J. G. (1987). Biocompatibility and degradability of sepiolite-collagen complex. Biomaterials, 8, 67–69.CrossRefGoogle Scholar
  71. Otto, C.C. (2014) In vitro and in vivo assessment of the mechanism of action and efficacy of antibacterial clays for the treatment of cutaneous infections. Arizona State University.Google Scholar
  72. Otto, C. C., & Haydel, S. E. (2013a). Microbicidal clays: composition, activity, mechanism of action, and therapeutic applications. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (Vol. 2, pp. 1169–1180). Badajoz: Formatex Research Center.Google Scholar
  73. Otto, C. C., & Haydel, S. E. (2013b). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE, 8, e64068  https://doi.org/10.1371/journal.pone.0064068.CrossRefGoogle Scholar
  74. Otto, C. C., Kilbourne, J., & Haydel, S. E. (2016). Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice. Journal of Medical Microbiology, 65, 19–27.CrossRefGoogle Scholar
  75. Otto, C. C., Koehl, J. L., Solanky, D., & Haydel, S. E. (2014). Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PloS one, 9(12), e115172.CrossRefGoogle Scholar
  76. Perfitt, R.J. and Carimbocas, C.A.R. (2017) U.S. Patent No. 9,801,793. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  77. Pesciaroli, C., Viseras, C., Aguzzi, C., Rodelas, B., & González-López, J. (2016). Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Applied Clay Science, 132, 59–67.CrossRefGoogle Scholar
  78. Pharmacopeia, U. S. (2018) United States Pharmacopeia and National Formulary (USP 41-NF 36). Rockville, MD: United States Pharmacopeial Convention, 2016.Google Scholar
  79. Popryadukhin, P. V., Dobrovolskaya, I. P., Yudin, V. E., Ivan’kova, E. M., Smolyaninov, A. B., & Smirnova, N. V. (2012). Composite materials based on chitosan and montmorillonite: prospects for use as a matrix for cultivation of stem and regenerative cells. Cell and Tissue Biology, 6, 82–88.CrossRefGoogle Scholar
  80. Prow, T. W., Grice, J. E., Lin, L. L., Faye, R., Butler, M., Becker, W., & Roberts, M. S. (2011). Nanoparticles and microparticles for skin drug delivery. Advanced Drug Delivery Reviews, 63, 470–491.CrossRefGoogle Scholar
  81. Quintela, A., Terroso, D., Da Silva, E. F., & Rocha, F. (2012). Certification and quality criteria of peloids used for therapeutic purposes. Clay Minerals, 47, 441–451.CrossRefGoogle Scholar
  82. Rangappa, S., Rangan, K. K., Sudarshan, T. S., & Murthy, S. N. (2017). Evaluation of lidocaine loaded clay based dermal patch systems. Journal of Drug Delivery Science and Technology, 39, 450–454.CrossRefGoogle Scholar
  83. Rebelo, M., Viseras, C., López-Galindo, A., Rocha, F., & da Silva, E. F. (2011). Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Applied Clay Science, 52, 219–227.CrossRefGoogle Scholar
  84. Rochette, S., Doyon, S., and Elkurdi, M. (2017) U.S. Patent Application No. 15/293,733.Google Scholar
  85. Saha, K., Butola, B. S., & Joshi, M. (2014). Synthesis and characterization of chlorhexidine acetate drug–montmorillonite intercalates for antibacterial applications. Applied Clay Science, 101, 477–483.CrossRefGoogle Scholar
  86. Sánchez-Espejo, R., Aguzzi, C., Cerezo, P., Salcedo, I., Lopez-Galindo, A., & Viseras, C. (2014). Folk pharmaceutical formulations in western Mediterranean: identification and safety of clays used in pelotherapy. Journal of Ethnopharmacology, 155, 810–814.CrossRefGoogle Scholar
  87. Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., Machado, J., & Viseras, C. (2015). Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Applied Clay Science, 116, 1–7.CrossRefGoogle Scholar
  88. Sandri, G., Aguzzi, C., Rossi, S., Bonferoni, M. C., Bruni, G., Boselli, C., & Ferrari, F. (2017). Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 57, 216–224.CrossRefGoogle Scholar
  89. Sandri, G., Bonferoni, M. C., Ferrari, F., Rossi, S., Aguzzi, C., Mori, M., & Caramella, C. (2014). Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 102, 970–977.CrossRefGoogle Scholar
  90. Sandri, G., Bonferoni, M.C., Rossi, S., Ferrari, F., Aguzzi, C., Viseras, C., and Caramella, C. (2016) Clay minerals for tissue regeneration, repair, and engineering. In M.S. Ågren (Ed.). Wound healing biomaterial (pp. 385–402). Elsevier.Google Scholar
  91. Sarfaraz, N. (Ed.). (2004). Handbook of pharmaceutical manufacturing formulations: Semisolid products (p. 113). Boca Raton, Florida, USA: CRC Press.Google Scholar
  92. Tao, L., Zhonglong, L., Ming, X., Zezheng, Y., Zhiyuan, L., Xiaojun, Z., & Jinwu, W. (2017). In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances, 7, 54100–54110.CrossRefGoogle Scholar
  93. Tenci, M., Rossi, S., Aguzzi, C., Carazo, E., Sandri, G., Bonferoni, M. C., & Ferrari, F. (2017). Carvacrol/clay hybrids loaded into in situ gelling films. International Journal of Pharmaceutics, 531, 676–688.CrossRefGoogle Scholar
  94. Timothy, G. R. A. Y., Cziryak, P., & Kljuic, A. (2015). U.S. Patent No., 9, 034,302.Google Scholar
  95. Tuba, T. (2018) Antibacterial Clay Compositions for Use as a Topical Ointment U.S. Patent Application No. 15/216,940. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  96. Vaiana, C. A., Leonard, M. K., Drummy, L. F., Singh, K. M., Bubulya, A., Vaia, R. A., & Kadakia, M. P. (2011). Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules, 12, 3139–3146.CrossRefGoogle Scholar
  97. Veniale, F., Bettero, A., Jobstraibizer, P. G., & Setti, M. (2007). Thermal muds: perspectives of innovations. Applied Clay Science, 36, 141–147.CrossRefGoogle Scholar
  98. Viseras, C., Aguzzi, C., and Cerezo, P. (2015) Medical and health applications of natural mineral nanotubes. In Natural mineral nanotubes: Properties and applications (pp. 437–448). Apple Academic Press Oakville, Canada and Waretown, New Jersey, USA.CrossRefGoogle Scholar
  99. Viseras, C., Aguzzi, C., Cerezo, P., & Bedmar, M. C. (2008). Biopolymer–clay nanocomposites for controlled drug delivery. Materials Science and Technology, 24, 1020–1026.CrossRefGoogle Scholar
  100. Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 37–50.CrossRefGoogle Scholar
  101. Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48, 291–295.CrossRefGoogle Scholar
  102. Wang, S., Castro, R., An, X., Song, C., Luo, Y., Shen, M., & Shi, X. (2012). Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry, 22, 23357–23367.CrossRefGoogle Scholar
  103. Wang, Z., Zhao, Y., Luo, Y., Wang, S., Shen, M., Tomás, H., & Shi, X. (2015). Attapulgite-doped electrospun poly (lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Advances, 5, 2383–2391.CrossRefGoogle Scholar
  104. Williams, L. B., Haydel, R. F., Giese, R. F., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437–452.CrossRefGoogle Scholar
  105. Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & Brunet de Courrsou, L. (2004). Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 3–8.Google Scholar
  106. Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes a natural clay antibacterial? Environmental Science & Technology, 45, 3768–3773.CrossRefGoogle Scholar
  107. Zhang, J.A., Zhang, Z., and Zhang, W. (2018) Burn ointment for promoting tissue regeneration and skin growth, and preparation method therefor. U.S. Patent Application No. 15/542,420.Google Scholar
  108. Zou, Q., Cai, B., Li, J., Li, J., & Li, Y. (2017). In vitro and in vivo evaluation of the chitosan/Tur composite film for wound healing applications. Journal of Biomaterials Science, Polymer Edition, 28, 601–615.CrossRefGoogle Scholar

Copyright information

© The Clay Minerals Society 2019

Authors and Affiliations

  • César Viseras
    • 1
    • 2
    Email author
  • Esperanza Carazo
    • 1
  • Ana Borrego-Sánchez
    • 1
    • 2
  • Fátima García-Villén
    • 1
  • Rita Sánchez-Espejo
    • 1
  • Pilar Cerezo
    • 1
  • Carola Aguzzi
    • 1
  1. 1.Department of Pharmacy and Pharmaceutical Technology, School of PharmacyUniversity of GranadaGranadaSpain
  2. 2.Andalusian Institute of Earth SciencesConsejo Superior de Investigaciones Científicas-University of GranadaArmillaSpain

Personalised recommendations