Advertisement

Journal of Biosystems Engineering

, Volume 23, Issue 1, pp 18–27 | Cite as

Review of Construction; Geometry; Heating, Ventilation, and Air-Conditioning; and Indoor Climate Requirements of Agricultural Greenhouses

  • Ali Muslim SyedEmail author
  • Caroline Hachem
Original Article
  • 36 Downloads

Abstract

Purpose

This article presents a comprehensive overview of the latest developments in greenhouse designs with the objective to determine the currently prevalent best design practices and lower their carbon and energy footprint.

Methods

This paper provides a review of the existing design trends in the construction; geometry; heating, ventilation, and air-conditioning (HVAC); and indoor climate requirements of agricultural greenhouses. This systematic review is expected to spearhead the effort in developing universal design guidelines for greenhouses.

Results

A systematic review of existing design practices and research on the construction, geometry, HVAC systems, and indoor climate requirements of agricultural greenhouses is presented.

Conclusions

This systematic review will provide a platform for universal design guidelines for greenhouses.

Keywords

Greenhouse design Greenhouse indoor climate Greenhouse geometry Greenhouse heating and cooling Greenhouse ventilation 

Nomenclature

ACH

air change per hour

ASHRAE

American Society of Heating, Refrigerating and Air-Conditioning Engineers

CFD

computational fluid dynamics

GHG

greenhouse gas

HVAC

heating ventilation and air-conditioning

LEED

Leadership in Energy and Environmental Design (version 4)

PPM

parts per million

PAR

photosynthetic active radiation

RH

relative humidity

VFD

variable frequency drive

Notes

Funding Information

The NSERC Discovery Grant financially supported the study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

References

  1. AGRIC (Alberta Agriculture and Forestry). (2018a). Components of the Greenhouse System for Environmental Control. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/opp2892. Accessed 19 Dec 2018.
  2. Agrios, G. N. (2005). Plant Pathology (5th ed.). New York: Elsevier Academic Press.Google Scholar
  3. Al-Helal, I. M., Waheeb, S. A., Ibrahim, A. A., Shady, M. R., & Abdel-Ghany, A. M. (2015). 2015. Modified thermal model to predict the natural ventilation of greenhouses. Energy and Buildings, 99, 1–8.CrossRefGoogle Scholar
  4. Amir, H. M., & Takashi, H. (1988). Greenhouse structure design optimization. Irrigation Engineering and Rural Planning., 14.Google Scholar
  5. ASHRAE Handbook. (2017). Fundamentals. Akron: ASHRAE Publications.Google Scholar
  6. ASHRAE/ANSI/ IES Standard 90.1. (2016). Energy standard for buildings except low-rise residential buildings. New York City: American Society of Heating, Refrigerating and Air-Conditioning Engineers.Google Scholar
  7. Benis, K., Reinhart, C., & Ferrao, P. (2017). Development of a simulation-based decision support workflow for the implementation of building-integrated agriculture (BIA) in urban contexts. Journal of Cleaner Productions, 147(2017), 589–602.CrossRefGoogle Scholar
  8. Benni, S., Tassinari, P., Bonora, F., Barbaeresi, A., & Torreggiani, D. (2016). Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a case study. Energy and Buildings, 125(2016), 276–286.CrossRefGoogle Scholar
  9. Briassoulis, D., Waaijenberg, D., Gratraud, J., & von Eslner, B. (1997). Mechanical properties of covering material for greenhouses: Part 1, general overview. Journal of Agricultural Engineering Research, 67, 81–96.CrossRefGoogle Scholar
  10. Campen, J. B., & Bot, G. P. A. (2001). 2001. Design of a low-energy dehumidifying system for greenhouses. Journal of Agricultural Engineering Research, 78(1), 65–73.CrossRefGoogle Scholar
  11. Candy, S., Moore, G., & Freere, P. (2012). Design and modeling of a greenhouse for a remote region in Nepal. Periodica Engineering, 49(2012), 152–190.Google Scholar
  12. CEN. (1997). Greenhouses: Design and construction. Part 1: commercial production greenhouses. Brussels: CEN.Google Scholar
  13. DeJong, T., VanDeBraak, N. J., & Bot, G. P. A. (1993). A wet plate heat exchanger for conditioning closed greenhouses. Journal of Agricultural Engineering Research; September, 56(1), p25–p37 13p.CrossRefGoogle Scholar
  14. DIN. (1994). DIN 11532–2. Greenhouses: steel and aluminum construction.Google Scholar
  15. EnergyPlus (2018). Available https://energyplus.net/. Accessed 15 Oct 2018.
  16. Engel, R. D. (1984). Using simulation to optimize solar greenhouse design, ANSS. In: Proceedings of the 17th annual symposium on Simulation, pp. 119–139.Google Scholar
  17. Geoola, F., Kashti, Y., & Peiper, U. M. (1998). 1998. A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials. Journal of Agricultural Engineering Research, 71, 339–346.CrossRefGoogle Scholar
  18. Ghosal M. K. Tiwari,, G. N., Das, D. K., Pandey, K. P. (2005). Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse. Energy and Buildings, 37(6):613–621.Google Scholar
  19. Kacira, M., Sase, S., & Okushima, L. (2004). Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation. Transactions of the ASAE, 47(6), 2059–2067.CrossRefGoogle Scholar
  20. Kittas, C., & Bartzanas, T. (2007). 2007. Greenhouse microclimate and dehumidification effectiveness under different ventilator configuration. Building and Environment, 42, 3774–3784.CrossRefGoogle Scholar
  21. Kittas, C., Karamanis, M., & Katsoulas, N. (2005). Air temperature in a forced ventilated greenhouse with rose crop. Energy and Buildings, 37(2005), 807–812.CrossRefGoogle Scholar
  22. Kittas, C., Katsoulas, N., Bartzanas, T., & Bakker, S. (2013). Greenhouse climate control and energy use, Good Agricultural Practices for greenhouse vegetable crops (p. 2013). Rome: Food and Agriculture Organization of The United Nations.Google Scholar
  23. Kolokotsa, D., Saridakis, G., Dalamagkidis, K., Dolianitis, S., & Kaliakatsos, I. (2010). Development of an intelligent indoor environment and energy management system for greenhouses. Energy Conservation and Management, 52(2010), 155–168.CrossRefGoogle Scholar
  24. Lamrani, M. A., Boulard, T., Roy, J. C., & Jaffrin, A. (2001). 2001. Air flows and temperature patterns induced in a confined greenhouse. J. agric. Engng Res., 78(1), 75–88.CrossRefGoogle Scholar
  25. National Greenhouse Manufactures Association (NGMA). (1981). Standards of quality and environmental control: Design loads in greenhouse structures, ventilation and cooling greenhouses, Greenhouse Heat Loss. 1981.Google Scholar
  26. National Greenhouse Manufactures Association (NGMA). (2017). Available https://www.ngma.com/index.htm. Accessed 4 Dec 2018.
  27. Sethi, V. P., & Sharma, S. K. (2007). Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy, 81(2007), 1447–1459.CrossRefGoogle Scholar
  28. Short, T. H., Bauerle, W. L. (1977). A double plastic heat conservation system for glass greenhouses, In: Proceedings of International Symposium on Controlled Environment Agriculture, Tucson, Arizona, April 1977.Google Scholar
  29. Stiles, M. R. (2012). A Design Model of Transient Performance for a Green Greenhouse. Distributed Generation and Alternative Energy Journal, 27(2).  https://doi.org/10.1080/21563306.2012.10505412.
  30. Sonneveld P., Fempkes F., Bot G. P. A. (2005). Greenhouse with an integrated NIR filter and a solar cooling system, Acta horticulturae, November 2005.Google Scholar
  31. Swinkels, G. L. A. M., Sonneveld, P. J., & Bot, G. P. A. (2001). 2001. Improvement of greenhouse insulation with restricted transmission loss through zigzag covering material, J. agric. Engng Res., 79(1), 91–97.CrossRefGoogle Scholar
  32. Tiwari, G. (2003). Greenhouse Technology for Controlled Environment. Oxford: Alpha Science Int’l Ltd.Google Scholar
  33. van dan Bulck, N., Coomans, M., Wittemans, L., Hanssens, J., & Steppe, K. (2013). Monitoring and energetic performances analysis of an innovative ventilation concept in a Belgian greenhouse. Energy and Buildings, 57(2013), 51–57.CrossRefGoogle Scholar
  34. Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011a). A methodology of model-based greenhouse design: Part 1, A greenhouse climate model for a broad range of designs and climates. Biosystems Engineering, 110(2011), 363–377.CrossRefGoogle Scholar
  35. Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011b). A methodology of model-based greenhouse design: Part 2, Description and validation of a tomato yield model. Biosystems Engineering, 110(2011), 378–395.CrossRefGoogle Scholar
  36. Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011c). A methodology of model-based greenhouse design: Part 3, Sensitivity analysis of a combined greenhouse climate-crop yield model. Biosystems Engineering, 110(2011), 396–412.CrossRefGoogle Scholar
  37. Vanthoor, B. H. E., Gazquez Juan, C., Magan Juan, C., Ruijs Marc, N. A., Baeza, E., Cecilia, S., van Henten Eldert, J., & de Visser Pieter, H. B. (2012a). A methodology of model-based greenhouse design: Part 4, Economic evaluation of different greenhouse designs: A Spanish case. Biosystems Engineering, 111(2012), 336–349.CrossRefGoogle Scholar
  38. Vanthoor, B. H. E., Stinger Johannes, D., Cecilia, S., van Henten Eldert, J., de Visser Pieter, H. B., & Silke, H. (2012b). A methodology of model-based greenhouse design: Part 5, greenhouse design optimization for southern-Spanish and Dutch conditions. Biosystems Engineering, 111(2012), 350–368.CrossRefGoogle Scholar
  39. Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222.CrossRefGoogle Scholar
  40. von Elsner, B., von Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., & Suay-Cortes, R. (2000a). Review of structural and functional characteristics of greenhouse in European Union countries: Part I, Design requirements. Journal of Agricultural Engineering Research, 75, 1–16.CrossRefGoogle Scholar
  41. von Elsner, B., von Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., & Suay-Cortes, R. (2000b). Review of structural and functional characteristics of greenhouse in European Union countries: Part II, Typical designs. Journal of Agricultural Engineering Research, 75, 111–126.CrossRefGoogle Scholar
  42. Waaijenberg D., Hemming S., Campen J. B. (2005). The solar greenhouse: A highly insulated greenhouse design with an inflated roof system with PVDF or ETFE membranes, Acta Hort. 691, ISHS 2005.Google Scholar
  43. Willits, D. H. (2003). Cooling fan-ventilated greenhouses: A modelling study. Biosystems Engineering, 84(3), 315–329.Google Scholar

Copyright information

© The Korean Society for Agricultural Machinery 2019

Authors and Affiliations

  1. 1.Solar Energy and Community Design Lab, Faculty of Environmental DesignUniversity of CalgaryCalgaryCanada
  2. 2.Solar Energy and Community Design Lab, Faculty of Environmental DesignUniversity of CalgaryCalgaryCanada

Personalised recommendations