Journal of Electrical Engineering & Technology

, Volume 14, Issue 6, pp 2355–2366 | Cite as

MTPA Trajectory Tracking Control with On-line MRAS Parameter Identification for an IPMSM

  • Ningzhi JinEmail author
  • Guangyi Li
  • Kai Zhou
  • Jinfeng Liu
  • Herbert Ho-Ching Iu
Original Article


The maximum torque per ampere (MTPA) control is capable of obtaining its maximal ratio of torque to current in a control system of interior permanent magnet synchronous motor (IPMSM). However, when its electrical parameters change with the actual operating conditions, the resulting MTPA trajectory will deflect from the optimal one. To solve this problem, a modified model reference adaptive system (MRAS) method is investigated for the parameter identification of the rotor flux linkage and the stator q-axis inductance, after a tradeoff between the MTPA trajectory derivation degree with parameter change and the rank-deficiency problem in the identification model. In this method, a full-rank estimator and its gain matrix are designed according to the Popov Hyper Stability Theorem. And the current operating point is updated using the identified parameters in order for the real-time tracking of MTPA trajectory. Simulation and experimental results verify that the proposed method enhances remarkably the MTPA tracking control effect and the system’s torque-current characteristics for an IPMSM.


Model reference adaptive system Parameter identification Maximum torque per ampere Interior permanent magnet synchronous motor 



This work was supported by the Harbin Science and Technology Bureau (CN) (2016RAQXJ018) and Education Department of Heilongjiang Province (CN) (UNPYSCT-2017099).


  1. 1.
    Jia C, Wang X, Liang Y, Zhou K (2019) Robust current controller for IPMSM drives Based on explicit model predictive control with online disturbance observer. IEEE Access 7:45898–45910CrossRefGoogle Scholar
  2. 2.
    Ilka R, Alinejad-Beromi Y, Yaghobi H (2018) Techno-economic design optimisation of an interior permanent-magnet synchronous motor by the multi-objective approach. IET Electr Power Appl 12(7):972–978CrossRefGoogle Scholar
  3. 3.
    Li K, Wang Y (2019) Maximum torque per ampere (MTPA) control for IPMSM drives based on a variable-equivalent-parameter MTPA control law. IEEE Trans Power Electron 34(7):7092–7102CrossRefGoogle Scholar
  4. 4.
    Chowdhury MM, Haque ME, Saha S et al (2018) An enhanced control scheme for an IPM synchronous generator based wind turbine with MTPA trajectory and maximum power extraction. IEEE Trans Energy Convers 33(2):556–566CrossRefGoogle Scholar
  5. 5.
    Jung SY, Hong J, Nam K (2013) Current minimizing torque control of the IPMSM using Ferrari’s method. IEEE Trans Power Electron 28(12):5603–5617CrossRefGoogle Scholar
  6. 6.
    Liu AH, Wang Y, Chen LC (2011) A self-checking method of MTPA for EV motors. China Patent 201010107606.7Google Scholar
  7. 7.
    Wang G, Li Z, Zhang G et al (2013) Quadrature PLL-based high-order sliding-mode observer for IPMSM sensorless control With online MTPA control strategy. IEEE Trans Energy Convers 28(1):214–224CrossRefGoogle Scholar
  8. 8.
    Bedetti N, Calligaro S, Olsen C et al (2017) Automatic MTPA tracking in IPMSM drives: loop dynamics, design, and auto-tuning. IEEE Trans Ind Appl 53(5):4547–4558CrossRefGoogle Scholar
  9. 9.
    Chen Q, Zhao W, Liu G et al (2019) Extension of virtual-Signal-injection-based MTPA control for five-phase IPMSM into fault-tolerant operation. IEEE Trans Industr Electron 66(2):944–955CrossRefGoogle Scholar
  10. 10.
    Shi JF, Ge BJ, Lv YL et al (2018) Research of parameter identification of permanent magnet synchronous motor on line. Electr Mach Control 22(3):17–24Google Scholar
  11. 11.
    Liu J, Chen W (2016) Online multi-parameter identification for surface-mounted permanent magnet synchronous motors under quasi-steady-state. Trans China Electrotech Soc 31(7):154–160Google Scholar
  12. 12.
    Underwood SJ, Husain I (2010) Online parameter estimation and adaptive control of permanent magnet synchronous machines. IEEE Trans Indus Electr 57(7):2435–2443CrossRefGoogle Scholar
  13. 13.
    Boileau T, Leboeuf N, Nahid-Mobarakeh N et al (2011) Online identification of PMSM parameters: parameter identifiability and estimator comparative study. IEEE Trans Ind Appl 47(4):1944–1957CrossRefGoogle Scholar
  14. 14.
    Liu K, Zhang Q, Zhu ZQ et al (2010) Comparison of two novel MRAS based strategies for identifying parameters in permanent magnet synchronous motors. Int J Autom Comput 7(4):516–524CrossRefGoogle Scholar
  15. 15.
    An QT, Sun L, Zhao K (2008) An adaptive on-line identification method for the parameters of permanent magnet synchronous motor. Trans China Electrotech Soc 23(6):31–35Google Scholar
  16. 16.
    Yang ZJ, Wang LN (2014) Online multi-parameter identification for surface-mounted permanent magnet synchronous motors. Trans China Electrotech Soc 23(9):111–118Google Scholar
  17. 17.
    Zhang YJ, Wang W, Zhang XQ et al (2017) Study on improved sliding-mode control with resistance estimation of PMSM. Electr Mach Control 21(6):10–17Google Scholar
  18. 18.
    Liu K, Zhang J (2010) Adaline neural network based online parameter estimation for surface-mounted permanent magnet synchronous machines. Proc IEEE 30(30):68–73Google Scholar
  19. 19.
    Shi T, Liu H, Chen W et al (2017) Parameter identification of surface permanent magnet synchronous machines considering voltage-source inverter nonlinearity. Trans China Electrotech Soc 32(7):77–83Google Scholar
  20. 20.
    Han ZZ, Chen PN, Chen SZ (2011) A textbook for adaptive control, vol 2. Tsinghua University Press, BeijingGoogle Scholar
  21. 21.
    Zhu Y, Wu S, Wu Z et al (2014) Precise torque control method of IPMSM in vehicle. Trans Chin Soc Agric Mach 45(1):8–13Google Scholar
  22. 22.
    Shen Z, Jiang D (2019) Dead-time effect compensation method based on current ripple prediction for voltage-source inverters. IEEE Trans Power Electron 34(1):971–983CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Automotive Electronics Drive Control and System Integration, Ministry of EducationHarbin University of Science and TechnologyHarbinChina
  2. 2.School of Electric, Electronic and Computer EngineeringUniversity of Western AustraliaPerthAustralia

Personalised recommendations