Advertisement

Journal of Electrical Engineering & Technology

, Volume 14, Issue 6, pp 2539–2547 | Cite as

Back-Stepping Integral Sliding Mode Control with Iterative Learning Control Algorithm for Quadrotor UAVs

  • Davood Allahverdy
  • Ahmad FakharianEmail author
  • Mohammad Bagher Menhaj
Original Article
  • 17 Downloads

Abstract

In this study, back-stepping integral sliding mode control (BISMC) with iterative learning control (ILC) algorithm are presented for nonlinear translational and rotational dynamics of the Quadrotor UAVs. The proposed controller (BISMC) can track desired trajectories and (ILC) is responsible for inclining the accuracy and robustness of the control strategy. In order to prove the stability of the closed loop system, Lyapunov theorem is used. The simulation results indicate that the proposed control strategy has high accuracy, suitable robustness, disturbance rejection, good trajectory tracking and fast transient responses for the Quadrotor UAVs despite the uncertainties and external disturbances.

Keywords

Back-stepping integral sliding mode control Quadrotor UAVs Iterative learning control Disturbance rejection 

Notes

References

  1. 1.
    Nemati H, Bando M, Hokamoto S (2017) Chattering attenuation sliding mode approach for nonlinear systems. Asian J Control 19(4):1519–1531MathSciNetCrossRefGoogle Scholar
  2. 2.
    Yin C, Huang X, Chen Y, Dadras S, Zhong SM, Cheng Y (2017) Fractional-order exponential switching technique to enhance sliding mode control. Appl Math Model 44:705–726MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zheng Z, Xia YQ, Fu MY (2011) Attitude stabilization of rigid spacecraft with finite-time convergence. Int J Robust Nonlinear Control 21:686–702MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gao YB, Luo WS, Liu JX et al (2017) Integral sliding mode control design for nonlinear stochastic systems under imperfect quantization. Sci China Inf Sci 60:1–11MathSciNetGoogle Scholar
  5. 5.
    Haddadi SJ, Emamagholi O, Javadi F, Fakhariyan A (2015) Attitude control and trajectory tracking of an autonomous miniature aerial vehicle. In: AI & robotics (IRANOPEN), Qazvin, pp 1–6Google Scholar
  6. 6.
    Lee D, Jin K, Shankar S (2009) Feedback linearization vs. adaptive sliding mode control for a Quadrotor helicopter. Int J Control 7(3):419–428CrossRefGoogle Scholar
  7. 7.
    Wang Y, Xia Y, Shen H, Zhou P (2017) SMC design for robust stabilization of nonlinear Markovian jump singular systems. IEEE Trans Autom Control 99:1–6Google Scholar
  8. 8.
    Wang Y, Shen H, Karimi H, Duan D (2017) Dissipativity-based fuzzy integral sliding mode control of continuous-time t–s fuzzy systems. IEEE Trans Fuzzy Syst 99:1–6Google Scholar
  9. 9.
    Tian BL, Yin LP, Wang H (2015) Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans Ind Electron 62:5889–5898CrossRefGoogle Scholar
  10. 10.
    Tian BL, Liu LH, Lu HC et al (2018) Multivariable finite time attitude control for quadrotor UAV: theory and experimentation. IEEE Trans Ind Electron 65:2567–2577CrossRefGoogle Scholar
  11. 11.
    Tian BL, Lu HC, Zuo ZY et al (2018) Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters. Int J Robust Nonlinear Control 28:281–295MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tian BL, Fan WR, Su R et al (2015) Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans Ind Electron 62:1639–1650CrossRefGoogle Scholar
  13. 13.
    Tian BL, Fan WR, Zong Q (2015) Integrated guidance and control for reusable launch vehicle in reentry phase. Nonlinear Dyn 80:397–412CrossRefGoogle Scholar
  14. 14.
    Emam M, Fakhariyan A (2016) Attitude tracking of quadrotor UAV via mixed H2/H∞ controller: a LMI based approach. In: 24th Mediterranean conference on control and automation (MED2016), Athens, pp 390–395Google Scholar
  15. 15.
    Niroumand J, Fakhariyan A (2015) Trajectory tracking via adaptive nonlinear control approach for a quadrotor MAV. In: IRANOPENGoogle Scholar
  16. 16.
    Massaoudi Y, Dorsaf E, Gaubert JP, Mehdi D, Damak T (2016) Experimental implementation of new sliding mode control law applied to a DC–DC boost converter. Asian J Control 18(6):2221–2233MathSciNetCrossRefGoogle Scholar
  17. 17.
    Espinoza T, Dzul AE, Lozano R, Parada P (2014) Backstepping-sliding mode controllers applied to a fixed-wing UAV. J Intell Robot Syst 73(1–4):67–79CrossRefGoogle Scholar
  18. 18.
    Li J, Zhang D (2018) Back-stepping and sliding-mode techniques applied to distributed secondary control of islanded microgrids. Asian J Control 20(3):1288–1295MathSciNetCrossRefGoogle Scholar
  19. 19.
    Khebbache H, Tadjine M (2013) Robust fuzzy backstepping sliding mode controllers for a Quadrotor unmanned aerial vehicle. J Control Eng Appl Inf 15(2):3–11Google Scholar
  20. 20.
    Li Y, Sun K, Tong S (2018) Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans Cybern 99:1–13Google Scholar
  21. 21.
    Zhang X, Liu X, Li Y (2018) Direct adaptive fuzzy back-stepping control for stochastic nonlinear SISO systems with unmodeled dynamics. Asian J Control 20(2):839–855MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pounds PE, Bersak DR, Dollar AM (2012) Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton Robot 33:129–142CrossRefGoogle Scholar
  23. 23.
    Javidi F, Fakharian A, Seyedsajadi MS (2013) Fuzzy integral backstepping control approach in attitude stabilization of a quadrotor UAV. In: 13th Iranian conference on fuzzy systemsGoogle Scholar
  24. 24.
    Zou Y, Zheng ZW (2015) A robust adaptive RBFNN augmenting back-stepping control approach for a model-scaled helicopter. IEEE Trans Control Syst Technol 23:2344–2352CrossRefGoogle Scholar
  25. 25.
    Dong J, Bin H (2019) Novel fuzzy PID-type iterative learning control for quadrotor UAV. Sensors 19(1):24CrossRefGoogle Scholar
  26. 26.
    Chirarattananon P, Ma KY, Wood RJ (2016) Perching with a robotic insect using adaptive tracking control and iterative learning control. Int J Robot Res 35(10):1185–1206CrossRefGoogle Scholar
  27. 27.
    Pipatpaibul PI, Ouyang PR (2013) Application of online iterative learning tracking control for quadrotor UAVs. In: ISRN roboticsGoogle Scholar
  28. 28.
    Schoellig AP, Mueller FL, D’Andrea R (2012) Optimization-based iterative learning for precise quadrocopter trajectory tracking. Auton Robots 33(1–2):103–127CrossRefGoogle Scholar
  29. 29.
    Hock A, Schoellig AP (2016) Distributed iterative learning control for a team of quadrotors. In: IEEE conference, pp 4640–4646Google Scholar
  30. 30.
    Xu R, Ozguner U (2006) Sliding mode control of a quadrotor helicopter. In: IEEE conference on decision and control, San Diego, pp 4957–4962Google Scholar
  31. 31.
    Schöllig A, D’Andrea R (2009) Optimization-based iterative learning control for trajectory tracking. In: European control conference (ECC), Budapest, pp 1505–1510Google Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of Electrical, Biomedical and Mechatronics EngineeringQazvin Branch, Islamic Azad UniversityQazvinIran
  3. 3.Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations