Journal of Electrical Engineering & Technology

, Volume 14, Issue 1, pp 201–208 | Cite as

Magnetic Integration Techniques of Inductors Used in a Buck Converter with EMI Filter

  • Vuttipon TarateerasethEmail author
Original Article


This paper presents the approaches to integrate all inductors used in a buck converter with EMI filter. First approach, a buck inductor and a CM choke are integrated using UIU and EI magnetic core types with proposed winding configurations. In the second approach, a buck inductor, a DM choke, and a CM choke are all integrated into single EIU magnetic core type with proposed winding configurations. The DM and CM reduction performances of the cases of buck converter: without any filter inserted, with filter using conventional discrete magnetic cores, and with filter using proposed integrated magnetic cores are evaluated and compared. From the experimental results, it can be concluded that there is no different among all cases for DM comparisons. However, for the CM comparisons, the integrated magnetic core using EIU core type provides the best CM reduction performance.


Buck converters, common-mode chokes DC-to-DC Differential-mode chokes EMC EMI filters Integrated magnetic 



This work was supported by the research grant from Srinakharinwirot University (357/2557). Author would like to thank Mr. Krit Boonrod, Mr. Rattasat Petchkhag and Mr. Rungsak Rungrerkwiwat for the experimental demonstrations.


  1. 1.
    Bose BK (2013) Global energy scenario and impact of power electronics in 21st century. IEEE Trans Ind Electron. 60(7):2638–2650CrossRefGoogle Scholar
  2. 2.
    Blaabjerg F, Liserre M, Ma K (2012) Power electronics converters for wind turbine systems. IEEE Trans Ind Electron. 48(2):708–719Google Scholar
  3. 3.
    Liserre M, Sauter T, Hung JY (2010) Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind Electron Mag 4(1):18–37CrossRefGoogle Scholar
  4. 4.
    Carrasco JM et al (2006) Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Electron 53(4):1002–1016CrossRefGoogle Scholar
  5. 5.
    Tarateeraseth V (2011) Systematic power line EMI filter design for SMPS, Part I: common-mode and differential-mode conducted emi generation mechanisms. In: IEEE EMC society newsletters, no. 231, Fall 2011. Accessed 1 Aug 2017
  6. 6.
    Otts HW (2009) Engineering electromagnetic compatibility, 1st edn. Wiley, Hoboken, USACrossRefGoogle Scholar
  7. 7.
    Laszlo T (1997) Electromagnetic compatibility in power electronics. IEEE Press, Florida, USAGoogle Scholar
  8. 8.
    Wu X et al (2011) Design, modeling, and improvement of integrated EMI filter with flexible multilayer foils. IEEE Trans Power Electron 26(5):1344–1354CrossRefGoogle Scholar
  9. 9.
    Lai Rixin et al (2010) An integrated EMI choke for differential-mode and common-mode noise suppression. IEEE Trans Power Electron 25(3):539–544CrossRefGoogle Scholar
  10. 10.
    Luo F et al (2011) An integrated common mode and differential mode choke for EMI suppression using magnetic epoxy mixture. In: Proc. IEEE Appl. Power Electron. Conf. Expo, pp 1715–1720, 2011Google Scholar
  11. 11.
    Tan Wenhua et al (2013) A common-mode choke using toroid-EQ mixed structure. IEEE Trans Power Electron 28(1):31–35MathSciNetCrossRefGoogle Scholar
  12. 12.
    Martinez W, Cortes C, Yamamoto M, Imaoka J, Umetani K (2017) Total volume evaluation of high-power density non-isolated DC–DC converters with integrated magnetics for electric vehicles. IET Power Electron 10(14):2010–2020CrossRefGoogle Scholar
  13. 13.
    Fang J, Li X, Yang X, Tang Y (2017) An integrated trap-LCL filter with reduced current harmonics for grid-connected converters under weak grid conditions. IEEE Trans Power Electron 32(11):8446–8457CrossRefGoogle Scholar
  14. 14.
    Li X, Fang J, Lin P, Tang Y (2018) Active magnetic decoupling for improving the performance of integrated LCL-filters in grid-connected converters. IEEE Trans Ind Electron 65(2):1367–1376CrossRefGoogle Scholar
  15. 15.
    Deng C et al (2014) Integration of both EMI filter and boost inductor for 1-kW PFC converter. IEEE Trans Power Electron 29(11):5823–5834CrossRefGoogle Scholar
  16. 16.
    van Wyk JD, Lee FC, Liang Z, Chen R, Wang S, Lu B (2005) Integrating active, passive and EMI-filter functions in power electronics systems:a case study of some technologies. IEEE Trans Power Electron 20(3):523–536CrossRefGoogle Scholar
  17. 17.
    Ouyang Z, Zhang Z, Thomsen OC, Andersen MAE (2011) Planar integrated magnetics (PIM) module in hybrid bidirectional DC-DC converter for fuel cell application. IEEE Trans Power Electron 26(11):3254–3264CrossRefGoogle Scholar
  18. 18.
    Ouyang Z, Sen G, Thomsen OC, Andersen MAE (2013) Analysis and design of fully integrated planar magnetics for primary-parallel isolated boost converter. IEEE Trans Ind Electron 60(2):494–508CrossRefGoogle Scholar
  19. 19.
    Pan D, Ruan X, Bao C et al (2014) Magnetic integration of the llc filter in grid-connected inverters. IEEE Trans Power Electron 29(4):1573–1578CrossRefGoogle Scholar
  20. 20.
    Severns RP, Bloom GE (1985) Modern DC-to-DC switchmode power converter circuits, Chap 12. Van Nostrand Reinhold Company, California, USAGoogle Scholar
  21. 21.
    Tarateeraseth V (2014) An integrated magnetic circuit for differential-mode and common-mode chokes of EMI filters. ECTI Trans on Electr Eng Electron Commun (ECTI-EEC) 12(1):82–89Google Scholar
  22. 22.
    Sakulhirirak D et al (2008) A new simultaneous conducted electromagnetic interference measuring and testing device. In: The 19th International Zurich symposium on electromagnetic compatibility, APEMC 2008, 19–23 May 2008Google Scholar
  23. 23.
    Mainali K, Oruganti R (2010) Conducted EMI mitigation techniques for switch-mode power converters: a survey. IEEE Trans Power Electron 25(9):2344–2356CrossRefGoogle Scholar
  24. 24.
    Wang S, Lee FC (2010) Analysis and applications of parasitic capacitance cancellation techniques for EMI suppression. IEEE Trans Power Electron 57(9):3109–3117Google Scholar
  25. 25.
    Chu Y, Wang S (2015) A generalized common-mode current cancelation approach for power converters. IEEE Trans Ind Electron 62(7):4130–4140CrossRefGoogle Scholar
  26. 26.
    Neugebauer TC, Perreault DJ (2006) Parasitic capacitance cancellation in filter inductors. IEEE Trans Power Electron 21(1):282–288CrossRefGoogle Scholar
  27. 27.
    Billings K, Morey T (2011) Switching power supply handbook, 3rd edn. McGraw-Hill, New York, USA, p 372Google Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSrinakharinwirot UniversityNakhonnayokThailand

Personalised recommendations