Advertisement

Modified Particle Swarm Optimizer as Optimization of Time Dial Settings for Coordination of Directional Overcurrent Relay

  • Tahir Khurshaid
  • Abdul Wadood
  • Saeid Gholami Farkoush
  • Chang-Hwan Kim
  • Namhun Cho
  • Sang-Bong Rhee
Original Article

Abstract

The coordination of directional overcurrent relays (DOCR) plays a very important role for maintaining security and enhancing reliability in the electrical power system. This paper presents the coordination of directional overcurrent relay using the modified particle swarm optimization (MPSO) technique. In order to improve the quality of a solution a local search algorithm is embedded to the original particle swarm optimization (PSO). Time dial settings had been optimized for directional overcurrent relays. In PSO technique on implementing the DOCR, being a highly constrained optimization problem that takes into consideration the linear programming. To handle such constraints a modification to PSO algorithm has been introduced. MPSO has achieved a lot of relaxation to its easy implementation, modesty and robustness. The proposed algorithm had been tested on IEEE 6-bus, IEEE 15-bus system and IEEE 30-bus system using MATLAB computer programming.

Keywords

Time dial settings Directional overcurrent relay Modified particle swarm optimizer Power system protection 

Notes

Acknowledgements

This research was supported by Korea Electric Power Corporation, grant number (R17XA05-38).

References

  1. 1.
    Anderson PM (1999) Power system protection—part IV: reliability of protection systems. McGraw-Hill/IEEE Press, New YorkGoogle Scholar
  2. 2.
    Rao VVB, Rao KS (1988) Computer aided coordination of directional relays: determination of break points. IEEE Trans Power Deliv. 3(2):545–548CrossRefGoogle Scholar
  3. 3.
    Wadood A, Kim CH, Khurshiad T, Farkoush SG, Rhee SB (2018) Application of a continuous particle swarm optimization (CPSO) for the optimal coordination of overcurrent relays considering a penalty method. Energies 11(4):869CrossRefGoogle Scholar
  4. 4.
    Jenkins L et al (1992) An application of functional dependencies to the topological analysis of protection schemes. IEEE Trans Power Deliv 7(1):77–83MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wadood A et al (2018) An optimized protection coordination scheme for the optimal coordination of overcurrent relays using a nature-inspired root tree algorithm. Appl Sci 8:1664CrossRefGoogle Scholar
  6. 6.
    Gholami Farkoush S et al (2018) Investigation and optimization of grounding grid based on lightning response by using ATP–EMTP and genetic algorithm. Complexity. 2018:8CrossRefGoogle Scholar
  7. 7.
    Yu J, Kim CH, Wadood A, Khurshiad T, Rhee SB (2018) A novel multi-population based chaotic JAYA algorithm with application in solving economic load dispatch problems. Energies 11(8):1946CrossRefGoogle Scholar
  8. 8.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4. Perth, Australia, pp 1942–1948Google Scholar
  9. 9.
    Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence. The 1998 IEEE international conference. IEEE, pp. 69–73Google Scholar
  10. 10.
    Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. Evolutionary Computation, Proceedings of the Congress 1:84–88Google Scholar
  11. 11.
    Park JB, Lee KS, Shin JR, Lee KY (2005) A particle swarm optimization for economic dispatch with non-smooth cost functions. IEEE Trans Power Syst 20(1):34–42CrossRefGoogle Scholar
  12. 12.
    Mansour MM, Mekhamer SF, El-Kharbawe Nehad (2007) A modified particle swarm optimizer for the coordination of directional overcurrent relays. IEEE Trans Power Deliv 22(3):1400–1410CrossRefGoogle Scholar
  13. 13.
    Urdaneta AJ, Pérez LG, Restrepo H (1997) Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology. IEEE Trans Power Deliv 12(4):1458–1464CrossRefGoogle Scholar
  14. 14.
    Zocholl SE et al (1989) Computer representation of overcurrent relay characteristics: IEEE committee report. IEEE Trans Power Deliv 4(3):1659–1667CrossRefGoogle Scholar
  15. 15.
    Mirotznik MS (1999) Enhancing Matlab-to C ++ programming. IEEE Spectr 36(2):64–64CrossRefGoogle Scholar
  16. 16.
    Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In Micro Machine and Human Science, 1995. MHS’95., proceedings of the sixth international symposium on (pp. 39–43). IEEEGoogle Scholar
  17. 17.
    Kim CH, Khurshaid T, Wadood A, Farkoush SG, Rhee SB (2018) Gray wolf optimizer for the optimal coordination of directional overcurrent relay. J Electr Eng Technol 13(3):1043–1051CrossRefGoogle Scholar
  18. 18.
    Mansour MO, Abdel-Rahman TM (1984) Non-linear VAR optimization using decomposition and coordination. IEEE Trans Power Appar Syst 103(2):246–255CrossRefGoogle Scholar
  19. 19.
    Bergh FVD, Engelbrecht AP (2001) Effects of swarm size on cooperative particle swarm optimizers. In: proceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kaufmann Publishers Inc, Burlington, pp 892–899Google Scholar
  20. 20.
    Bouchekaraa HREH, Zellaguib M, Abidoc MA (2017) Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm. Appl Soft Comput Elsevier 54:267–283CrossRefGoogle Scholar
  21. 21.
    Amraee T (2012) Coordination of directional overcurrent relays using seeker algorithm. IEEE Trans Power Deliv 27(3):1415–1422CrossRefGoogle Scholar
  22. 22.
    Singh M, Panigrahi BK, Abhyankar AR (2013) Optimal coordination of directional overcurrent relays using teaching learning-based optimization (TLBO) algorithm. Int J Electr Power Energy Syst 50:33–41CrossRefGoogle Scholar
  23. 23.
    Chelliah TR, Thangaraj R, Allamsetty S, Pant M (2014) Coordination of directional overcurrent relays using opposition based chaotic differential evolution algorithm. Int J Electr Power Energy Syst 55:341–350CrossRefGoogle Scholar
  24. 24.
    Thangaraj R, Pant M, Deep K (2010) Optimal coordination of overcurrent relays using modified differential evolution algorithms. Eng Appl Artif Intell 23(5):820–829CrossRefGoogle Scholar
  25. 25.
    Zellagui M, Hassan HA (2015) A hybrid optimization algorithm (IA-PSO) for optimal coordination of directional overcurrent relays in meshed power systems. Wseas Trans Power Syst 10:20–250Google Scholar
  26. 26.
    Alipour M, Teimourzadeh S, Seyedi H (2015) Improved group search optimization algorithm for coordination of directional overcurrent relays. Swarm Evolut Comput Elsevier 23:4–49Google Scholar
  27. 27.
    Noghabi AS, Mashhadi HR, Sadeh J (2010) Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming. IEEE Trans Power Deliv 25:1348–1354CrossRefGoogle Scholar
  28. 28.
    Noghabi AS, Sadeh J, Mashhadi HR (2018) Parameter uncertainty in the optimal coordination of overcurrent relays. Int Trans Electr Energy Syst 28(7):e2563CrossRefGoogle Scholar
  29. 29.
    Hajjar A (1999) Adaptive coordination of overcurrent relays in power distribution networks. Diss. M. Sc thesis in Electrical Engineering, Ain Shams University, 1999Google Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  • Tahir Khurshaid
    • 1
  • Abdul Wadood
    • 1
  • Saeid Gholami Farkoush
    • 1
  • Chang-Hwan Kim
    • 1
  • Namhun Cho
    • 2
  • Sang-Bong Rhee
    • 1
  1. 1.Department of Electrical EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Korea Electric Power Research Institute (KEPRI), Korea Electric Power Company (KEPCO)TaejonKorea

Personalised recommendations