Advertisement

Journal of Electrical Engineering & Technology

, Volume 14, Issue 1, pp 121–133 | Cite as

The Propagation Mechanism of Fault Signatures in Squirrel Cage Induction Motor Drives

  • Yassine MaoucheEmail author
  • Mohamed El Kamel Oumaamar
  • Mohamed Boucherma
  • Abdelmalek Khezzar
  • Hubert Razik
Original Article
  • 5 Downloads

Abstract

This work presents a new approach for analyzing the propagation mechanism of fault signatures in squirrel cage induction motor drives. The used method is based on the analysis of different currents of solid states converters and the fault signatures are investigated when motor is supplied by the volt-per-hertz control mode. Analytical expressions of currents at different location for broken bar, mixed air-gap eccentricity, unbalanced voltage supply are developed using switching functions of both inverter and diode rectifier. Experimental results are provided throughout the paper, to underpin the theoretical analysis. The results show that capacitor current spectrum can give useful information about the state of squirrel cage induction motor. However, due to the low-pass filter composed by capacitor only the fault signatures at low frequency range can be detected from the rectifier supply line current spectrum.

Keywords

Current measurement Fault detection Fast Fourier transformation Induction motor Spectral analysis 

References

  1. 1.
    Cruz SM, Cardoso AJM (2001) Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended park’s vector approach. Ind Appl IEEE Trans 37(5):1227–1233CrossRefGoogle Scholar
  2. 2.
    Oumaamar MEK, Khezzar A, Boucherma M, Razik H, Andriamalala RN, Baghli L (2007) Neutral voltage analysis for broken rotor bars detection in induction motors using hilbert transform phase. In: Industry applications conference, 42nd IAS annual meeting, conference record of the 2007 IEEE, pp 1940–1947Google Scholar
  3. 3.
    Blodt M, Granjon P, Raison B, Rostaing G (2008) Models for bearing damage detection in induction motors using stator current monitoring. Ind Electron IEEE Trans 55(4):1813–1822CrossRefGoogle Scholar
  4. 4.
    Humberto H, Hubert R, Capolino G-A (2005) Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults. Ind Appl IEEE Trans 41(3):801–807CrossRefGoogle Scholar
  5. 5.
    Nandi S, Toliyat HA, Li X (2005) Condition monitoring and fault diagnosis of electrical motors-a review. Energy Convers IEEE Trans 20(4):719–729CrossRefGoogle Scholar
  6. 6.
    Faiz J, Ebrahimi BM, Toliyat HA, Abu-Elhaija WS (2010) Mixed-fault diagnosis in induction motors considering varying load and broken bars location. Energy Convers Manag 51(7):1432–1441CrossRefGoogle Scholar
  7. 7.
    Pires DF, FernoPires V, Martins JF, Pires AJ (2009) Rotor cage fault diagnosis in three-phase induction motors based on a current and virtual flux approach. Energy Convers Manag 50(4):1026–1032CrossRefGoogle Scholar
  8. 8.
    Khezzar A, Kaikaa MY, El Kamel OM, Boucherma M, Razik H (2009) On the use of slot harmonics as a potential indicator of rotor bar breakage in the induction machine. Ind Electron IEEE Trans 56(11):4592–4605CrossRefGoogle Scholar
  9. 9.
    Aydin I, Karakose M, Akin E (2011) A new method for early fault detection and diagnosis of broken rotor bars. Energy Convers Manag 52(4):1790–1799CrossRefGoogle Scholar
  10. 10.
    Hakan al and Abdlkadirakr (2008) Experimental study for sensorless broken bar detection in induction motors. Energy Convers Manag 49(4):854–862CrossRefGoogle Scholar
  11. 11.
    Nemec M, Drobnic K, Nedeljkovic D, Fiser R, Ambrozic V (2010) Detection of broken bars in induction motor through the analysis of supply voltage modulation. Ind Electron IEEE Trans 57(8):2879–2888CrossRefGoogle Scholar
  12. 12.
    Boileau T, Leboeuf N, Nahid-Mobarakeh B, Meibody-Tabar F (2013) Synchronous demodulation of control voltages for stator interturn fault detection in pmsm. Power Electron IEEE Trans 28(12):5647–5654CrossRefGoogle Scholar
  13. 13.
    Georgakopoulos IP, Mitronikas ED, Safacas AN (2011) Detection of induction motor faults in inverter drives using inverter input current analysis. Ind Electron IEEE Trans 58(9):4365–4373CrossRefGoogle Scholar
  14. 14.
    Concari C, Franceschini G, Tassoni C (2008) Rotor fault detection in closed loop induction motors drives by electric signal analysis. In: Electrical machines, 2008, ICEM 2008. 18th International Conference on, IEEE, pp. 1–6Google Scholar
  15. 15.
    Bellini A, Filippetti F, Franceschini G, Tassoni C (2000) Closed-loop control impact on the diagnosis of induction motors faults. Ind Appl IEEE Trans 36(5):1318–1329CrossRefGoogle Scholar
  16. 16.
    Cruz SMA, Stefani A, Filippetti F, Cardoso AJM (2008) A new model-based technique for the´diagnosis of rotor faults in rfoc induction motor drives. Ind Electron IEEE Trans 55(12):4218–4228CrossRefGoogle Scholar
  17. 17.
    Kral C, Wieser RS, Pirker F, Schagginger M (2000) Sequences of field-oriented control for the detection of faulty rotor bars in induction machines-the Vienna monitoring method. Ind Electron IEEE Trans 47(5):1042–1050CrossRefGoogle Scholar
  18. 18.
    Bachir S, Tnani S, Trigeassou J-C, Champenois G (2006) Diagnosis by parameter estimation of stator and rotor´ faults occurring in induction machines. Ind Electron IEEE Trans 53(3):963–973CrossRefGoogle Scholar
  19. 19.
    Kallesoe CS, Izadi-Zamanabadi R, Vadstrup P, Rasmussen HARH (2007) Observer-based estimation of stator-winding faults in delta-connected induction motors: a linear matrix inequality approach. Ind Appl IEEE Trans 43(4):1022–1031CrossRefGoogle Scholar
  20. 20.
    Tallam RM, Habetler TG, Harley RG (2003) Stator winding turn-fault detection for closed-loop induction motor drives. Ind Appl IEEE Trans 39(3):720–724CrossRefGoogle Scholar
  21. 21.
    Ahmed S, Nandi S, Toliyat HA (2001) Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages. Trans Energy Convers 16(3):253–260CrossRefGoogle Scholar
  22. 22.
    Oumaamar MEK, Razik H, Rezzoug A, Hadjami M, Khezzar A (2011) Analytical model of cage induction machine dedicated to the study of axial non-uniformities. Ind Appl IEEE Trans 2011:585–591Google Scholar
  23. 23.
    Dahono PA, Sato Y, Kataoka T (1996) Analysis and minimization of ripple components of input current and voltage of PWM inverters. Ind Appl IEEE Trans 32(4):945–950CrossRefGoogle Scholar
  24. 24.
    Poon NK, Liu JCP, Tse CK, Pong MH (2000) Techniques for input ripple current cancellation: classification and implementation [in SMPS]. Power Electron IEEE Trans 15(6):1144–1152CrossRefGoogle Scholar
  25. 25.
    Salazar L, Joos G (1994) Pspice simulation of three-phase inverters by means of switching functions. Power Electron IEEE Trans 9(1):35–42CrossRefGoogle Scholar
  26. 26.
    Lee B-K, Ehsami M (2001) A simplified functional simulation model for three-phase voltage-source inverter using switching function concept. Ind Electron IEEE Trans 48(2):309–321CrossRefGoogle Scholar
  27. 27.
    Maouche Y, El Kamel M, Oumaamar MB, Khezzar A (2014) Instantaneous power spectrum analysis for broken bar fault detection in inverter-fed six-phase squirrel cage induction motor. Int J Electr Power Energy Syst 62:110–117CrossRefGoogle Scholar
  28. 28.
    Rashid MH, Maswood AI (1988) Analysis of three-phase ac-dc converters under unbalanced supply conditions. Ind Appl IEEE Trans 24(3):449–455CrossRefGoogle Scholar
  29. 29.
    Lihua H, Yacamini R (1992) Harmonic transfer through converters and HVDC links. Power Electron IEEE Trans 7(3):514–525CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.Laboratoire d’Electrotechnique de ConstantineUniversité des Frères Mentouri Constantine 1ConstantineAlgeria
  2. 2.Université de Lyon, UNCBL Lyon 1, ECL, INSA, CNRS, AMPEREVilleurbanneFrance

Personalised recommendations