Journal of Electrical Engineering & Technology

, Volume 14, Issue 1, pp 209–218 | Cite as

Adaptive Wavelet CMAC Tracking Control for Induction Servomotor Drive System

  • Thanh-Quyen Ngo
  • Mien-Ka Duong
  • D. C. Pham
  • Duc-Nam NguyenEmail author
Original Article


This research proposes an enhanced control system for induction servomotor to obtain the high-precision position tracking based on wavelet cerebellar model articulation controller. The proposed controller combines the wavelet cerebellar articulation model (WCMAC) with compensator controller to have high performance for the system. The superior properties of the WCMAC are its fast learning of the CMAC and wavelet decomposition capability. Therefore, it is used to mimic a model-based controller with exactly unknown parameters. The compensator controller with an estimated boundary error attenuates the effects of disturbances due to time-varying parameters and load acting on the shaft of motor. The online learning rules of WCMAC derived from gradient-descent method and Lyapunov function is used to estimate bound error to ensure the stability of the system. The experimental results for induction servomotor are provided to conclude the effectiveness of the proposed control system even the dynamic model of the induction servomotor is completely unknown.


Wavelet Cerebellar model articulation controller (CMAC) Uncertain non-linear systems Servomotor Neural network (NN) Wavelet neural network (WNN) 


  1. 1.
    Bose BK (1986) Power electronics and AC drives. Prentice-Hall, Englewood CliffsGoogle Scholar
  2. 2.
    Novotny DW, Lipo TA (1996) Vector control and dynamics of AC drives. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Liaw CM, Lin FJ (1995) Position control with fuzzy adaptation for induction servomotor drive. Proc IEE Electr Power Appl 142:397–404CrossRefGoogle Scholar
  4. 4.
    Chan CC, Wang HQ (1996) New scheme of sliding-mode control for high performance induction motor drives. Proc IEE Electr Power Appl 143:177–185CrossRefGoogle Scholar
  5. 5.
    Lin FJ, Wai RJ, Lin CH, Liu DC (2000) Decoupled stator-fluxoriented induction motor drive with fuzzy neural network uncertainty observer. IEEE Trans Ind Electron 47:356–367CrossRefGoogle Scholar
  6. 6.
    Zigmund B (2005) A novel technique to estimate rotor time constant in vector controlled induction motor drives. In: European conference on power electronics and applicationsGoogle Scholar
  7. 7.
    Shieh H-J, Shyu K-K, Lin F-J (1998) Adaptive estimation of rotor time constant for indirect field-oriented induction motor drive. IEE Proc Electr Power Appl 145(2):111–118CrossRefGoogle Scholar
  8. 8.
    Wai RJ (2002) Development of new training algorithms for neuro-wavelet systems on the robust control of induction servo motor drive. IEEE Trans Ind Electron 49(6):1323–1341CrossRefGoogle Scholar
  9. 9.
    Ei-Sousy FFM (2001) Robust wavelet-neural network sliding-mode control system for permanent magnet synchronous motor drives. IET Electr Power Appl 5(1):113–132CrossRefGoogle Scholar
  10. 10.
    Lu CH (2009) Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans Ind Electron 56(9):3733–3742CrossRefGoogle Scholar
  11. 11.
    Lin F-J, Chen S-Y, Hung Y-C (2009) Field-programmable gate array-based recurrent wavelet neural network control system for linear ultrasonic motor. IET Electr Power Appl 3(4):289–312CrossRefGoogle Scholar
  12. 12.
    Yu W, Moreno-Armendariz MA, Rodriguez FO (2011) Stable adaptive compensation with fuzzy CMAC for an overheadcrane. Inf Sci 181(21):4895–4907CrossRefzbMATHGoogle Scholar
  13. 13.
    Hsu CF, Lin CM, Lee TT (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183CrossRefGoogle Scholar
  14. 14.
    Khan MASK, Rahman MA (2010) A novel neuro wavelet based selftuned wavelet controller for IPM motor drives. IEEE Trans Ind Appl 46(3):1194–1203CrossRefGoogle Scholar
  15. 15.
    Lin FJ, Hung YC, Chen SY (2010) FPGA-based intelligent dynamic sliding-mode control using recurrent wavelet neural network for linear ultrasonic motor. IET Control Theory Appl 4(9):1511–1532CrossRefGoogle Scholar
  16. 16.
    Jagannathan S, Commuri S, Lewis FL (1998) Feedback linearization using CMAC neural networks. Automation 34(3):547–557MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kim YH, Lewis FL (2000) Optimal design of CMAC neural-network controller for robot manipulators. IEEE Trans Syst Man Cybern C Appl Rev 30(1):22–31CrossRefGoogle Scholar
  18. 18.
    Wai RJ, Lin FJ (1999) Fuzzy neural network sliding-mode position controller for induction servo motor drive. Proc IEE Elect Power Appl 146:297–307CrossRefGoogle Scholar
  19. 19.
    Lin C-M, Peng Y-F (2004) Adaptive CMAC-based supervisory control for uncertain nonlinear systems. IEEE Trans Syst Man Cybern Part B Cybern 34(2):1248–1260CrossRefGoogle Scholar
  20. 20.
    Yu Z-R, Yang T-C, Juang JG (2010) Application of CMAC and FPGA to a twin rotor MIMO system. In: 2010 5th IEEE conference on industrial electronics and applications, Taichung, pp 264–269Google Scholar
  21. 21.
    Ta V-P, Dang X-K, Ngo TQ (2017) Adaptive tracking control based on CMAC for nonlinear systems. In: Proceedings of the international conference on system science and engineeringGoogle Scholar
  22. 22.
    Lin CM, Li HY (2012) A novel adaptive wavelet fuzzy cerebellar model articulation control system design for voice coil motors. IEEE Trans Ind Electron 59(4):2024–2033CrossRefGoogle Scholar
  23. 23.
    Wai R-J, Lin C-M, Peng Y-F (2004) Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network. IEEE Trans Neural Netw 15(6):1491–1506CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  • Thanh-Quyen Ngo
    • 1
  • Mien-Ka Duong
    • 1
  • D. C. Pham
    • 1
  • Duc-Nam Nguyen
    • 2
    • 3
    Email author
  1. 1.Faculty of Electrical Engineering TechnologyIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
  2. 2.Division of Computational MechatronicsInstitute for Computation Science, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Electrical & Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations