DC Fault Protection in Multi-terminal VSC-Based HVDC Transmission Systems with Current Limiting Reactors

  • M. MohanEmail author
  • K. Panduranga Vittal
Original Article


Multi-terminal VSC-based HVDC transmission system is the recent interest for grid integration of large-scale offshore wind farms. Protection of multi-terminal voltage source converters (VSC)-based HVDC transmission systems against DC faults is challenging. This paper presents a single-ended protection scheme for DC faults in a three-terminal VSC-HVDC transmission system. The under-voltage criterion is used to distinguish the DC faults from the transient and normal conditions. The rate of change of DC voltage and current as well as the variation of transient energy is used to discriminate the internal faults from the external faults. The DC fault current has very high value within a few milliseconds during the transient phases such as the capacitor discharging and diode freewheeling stages. Therefore, current limiting reactors are introduced in series with the DC circuit breaker to maintain the DC fault current within the breaker capacity. The single-ended protection scheme is tested with the three-terminal VSC-HVDC transmission system with current limiting reactors for various DC fault conditions. The DC fault data is generated from PSCAD/EMTDC simulation and the protection scheme is tested in MATLAB environment. Test results show that the proposed protection scheme gives reliable protection for the DC faults in a three-terminal VSC-HVDC transmission system.


Current limiting reactors DC fault DC transmission line protection Multi-terminal VSC-HVDC system Voltage source converters 


  1. 1.
    Xu L, Yao L, Sasse C (2007) Grid integration of large DFIG-based wind farms using VSC transmission. IEEE Trans Power Syst 22(3):976–984CrossRefGoogle Scholar
  2. 2.
    Franck CM (2011) HVDC circuit breakers: a review identifying future research needs. IEEE Trans Power Deliv 26(2):998–1007CrossRefGoogle Scholar
  3. 3.
    Torres-Olguin RE, Molinas M, Undeland T (2012) Offshore wind farm grid integration by VSC technology with LCC based HVDC transmission. IEEE Trans Sustain Energy 3(4):899–907CrossRefGoogle Scholar
  4. 4.
    Hajian M, Jovcic D, Wu B (2013) Evaluation of semiconductor based methods for fault isolation on high voltage DC grids. IEEE Trans Smart Grid 4(2):1171–1179CrossRefGoogle Scholar
  5. 5.
    Jovcic D, Hertem DV, Linden K, Taisne JP, Grieshaber W (2011) Feasibility of DC transmission networks. In: Innovative smart grid technologies (ISGT Europe), 2011 2nd IEEE PES international conference and exhibition, Manchester, UK, 5–7 Dec. 2011, pp 1–8Google Scholar
  6. 6.
    Baran ME, Mahajan NR (2007) Overcurrent protection on voltage source converter based multiterminal DC distribution systems. IEEE Trans Power Deliv 22(1):406–412CrossRefGoogle Scholar
  7. 7.
    Tang L, Ooi BT (2007) Locating and isolating DC faults in multiterminal DC systems. IEEE Trans Power Deliv 22(3):1877–1883CrossRefGoogle Scholar
  8. 8.
    Naidoo D, Ijumba NM (2004) HVDC line protection for the proposed future HVDC systems. In: 2004 International conference on power system technology—POWERCON, Singapore, Nov. 2004, pp 1327–1332Google Scholar
  9. 9.
    Kerf KD, Srivastava K, Reza M, Bekaert D, Cole S, Hertem DV, Belmans R (2011) Wavelet based protection strategy for DC faults in multiterminal VSC HVDC systems. IET Gener Transm Distrib 5(4):496–503CrossRefGoogle Scholar
  10. 10.
    Costa FB, Monti A, Paiva SC (2017) Overcurrent protection in distribution systems with distributed generation based on the real-time boundary wavelet transform. IEEE Trans Power Deliv 32(1):462–473CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Tai N, Xu B (2012) Fault analysis and travelling wave protection scheme for bipolar HVDC lines. IEEE Trans Power Deliv 27(3):1583–1591CrossRefGoogle Scholar
  12. 12.
    Nanayakkara OMKK, Rajapakse AD, Wachal R (2012) Travelling wave based line fault location in star connected multiterminal HVDC systems. IEEE Trans Power Deliv 27(4):2286–2294CrossRefGoogle Scholar
  13. 13.
    Yang J, Fletcher JE, O’Reilly J (2010) Multiterminal DC wind farm collection grid internal fault analysis and protection design. IEEE Trans Power Deliv 25(4):2308–2318CrossRefGoogle Scholar
  14. 14.
    Yang J, Fletcher JE, O’Reilly J (2012) Short circuit and ground fault analyses and location in VSC based DC network cables. IEEE Trans Ind Electron 59(10):3827–3837CrossRefGoogle Scholar
  15. 15.
    Fletcher SDA, Norman PJ, Fong K, Galloway SJ, Burt GM (2014) High speed differential protection for smart DC distribution systems. IEEE Trans Smart Grid 5(5):2610–2616CrossRefGoogle Scholar
  16. 16.
    Hajian M, Zhang L, Jovcic D (2015) DC transmission grid with low speed protection using mechanical DC circuit breakers. IEEE Trans Power Deliv 30(3):1383–1391CrossRefGoogle Scholar
  17. 17.
    Zheng X, Nengling T, Guangliang Y, Haoyin D (2012) A transient protection scheme for HVDC transmission line. IEEE Trans Power Deliv 27(2):718–724CrossRefGoogle Scholar
  18. 18.
    Seneath J, Rajapakse AD (2016) Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid DC breakers. IEEE Trans Power Deliv 31(3):973–981CrossRefGoogle Scholar
  19. 19.
    Li R, Xu L, Yao L (2017) DC fault detection and location in meshed multi-terminal HVDC systems based on DC reactor voltage change rate. IEEE Trans Power Deliv 32(3):1516–1526CrossRefGoogle Scholar
  20. 20.
    Leterme W, Beerten J, Hertem DV (2016) Non-unit protection of HVDC grids with inductive dc cable termination. IEEE Trans Power Deliv 31(2):820–828CrossRefGoogle Scholar
  21. 21.
    Ademi S, Tzelepis D, Dysko A, Subramanian S, Ha H (2016) Fault current characterisation in VSC based HVDC systems. In: Proc. 13th IET international conference on developments in power system protection, Edinburgh, UK, 2016, pp 1–7Google Scholar
  22. 22.
    Tzelepis D, Ademi S, Vozikis D, Dysko A, Subramanian S, Ha H (2016) Impact of VSC converter topology on fault characteristics in HVDC transmission systems. In: Proc. 8th IET international conference on power electronics, machines and drives, Glasgow, 2016, pp 1–6Google Scholar
  23. 23.
    MRI Network (2013) Collation of European grid codes. In version 01, 10th Sep. 2013Google Scholar
  24. 24.
    Mohan M, Panduranga Vittal K (2017) Modeling and simulation studies on performance evaluation of three-terminal VSC-HVDC link connected offshore wind farms. In: 2017 International conference on energy, communication, data analytics and soft computing (ICECDS), IEEE, Chennai, India, 1–2 Aug. 2017, pp 473–478Google Scholar
  25. 25.
    Hafner J, Jacobson B (2011) Proactive hybrid HVDC breakers—a key innovation for reliable HVDC grids. In: Proc. CIGRE, Bologna, Italy, 2011Google Scholar
  26. 26.
    Kontos E, Pinto RT, Rodrigues S, Bauer P (2015) Impact of HVDC transmission system topology on multiterminal DC network faults. IEEE Trans Power Deliv 30(2):844–852CrossRefGoogle Scholar
  27. 27.
    Nadeem MH, Zheng X, Tai N, Gul M, Tahir S (2018) Analysis of propagation delay for multi-terminal high voltage direct current networks interconnecting the large-scale off-shore renewable energy. Energies 11(8):2115CrossRefGoogle Scholar
  28. 28.
    Tahata K et al (2014) HVDC circuit breakers for HVDC grid applications. In: Proc. CIGRE AORC Tech. Meeting, Tokyo, Japan, 2014Google Scholar
  29. 29.
    Tzelepis D, Dyśko A, Fusiek G, Nelson J, Niewczas P, Vozikis D, Orr P, Gordon N, Booth C (2017) Single-ended differential protection in MTDC networks using optical sensors. IEEE Trans Power Deliv 32(3):1605–1615CrossRefGoogle Scholar
  30. 30.
    Liu J, Tai N, Fan C, Chen S (2017) A hybrid current-limiting circuit for DC line fault in multiterminal VSC-HVDC system. IEEE Trans Ind Electron 64(7):5595–5607CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringNational Institute of Technology Karnataka (NITK)SurathkalIndia

Personalised recommendations