Journal of Electrical Engineering & Technology

, Volume 14, Issue 1, pp 275–285 | Cite as

Improved Backstepping Control with Nonlinear Disturbance Observer for the Speed Control of Permanent Magnet Synchronous Motor

  • Xu-Dong Liu
  • Ke LiEmail author
  • Cheng-Hui Zhang
Original Article


This paper investigates the speed regulation problem of permanent magnet synchronous motor (PMSM) drive based on backstepping control and nonlinear disturbance observer. By introducing the backstepping control, the single-loop controller is designed instead of the traditional cascade structure, in which, speed and current controller are combined together by recursive design. However, the standard backstepping control method cannot achieve a satisfying behavior in the presence of the disturbance and parameter uncertainties. Unlike the existing adaptive backstepping control method, a nonlinear disturbance observer is designed to estimate the lump disturbance, which includes the matched and mismatched disturbance in the system. Through disturbance estimation and feed-forward compensation, the robustness of the controller is improved effectively. The stability of the system is also proved. Finally, simulation and experiment are implemented with real-time interface (RTI) based on dSPACE. Compared with PI control method, the proposed composite backstepping controller has fast transient response and strong robustness for all disturbance in various conditions.


PMSM Backstepping control Mismatched disturbance Nonlinear disturbance Observer 



This work was supported by the National Natural Science Foundation of China under Grant 61703222 and Grant 61573223, and by the China Postdoctoral Science Foundation under Grant 2018M632622.


  1. 1.
    Chen PY, Hu KW, Lin YG (2018) Development of a prime mover emulator using a permanent-magnet synchronous motor drive. IEEE Trans Power Electron 33(7):6114–6125CrossRefGoogle Scholar
  2. 2.
    Santiago JD, Bernhoff H, Ekergard B (2012) Electrical motor drivelines in commercial all-electric vehicles: a review. IEEE Trans Veh Technol 61(2):475–484CrossRefGoogle Scholar
  3. 3.
    Mohamed YA-RI (2008) A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems. IEEE Trans Veh Technol 23(1):92–100Google Scholar
  4. 4.
    Aliskan I, Gulez K, Tuna G (2013) Nonlinear speed controller supported by direct torque control algorithm and space vector modulation for induction motors in electrical vehicles. Elektronika Ir Elektrotechnia 19(6):41–46Google Scholar
  5. 5.
    Wang S, Fu J, Yang Y (2017) An improved predictive functional control with minimum-order observer for speed control of permanent magnet synchronous motor. J Electr Eng Technol 12(1):272–283CrossRefGoogle Scholar
  6. 6.
    Ting CS, Chang YN, Shi BW, Lieu JF (2015) Adaptive backstepping control for permanent magnet linear synchronous motor servo drive. IET Electr Power Appl 9(3):265–279CrossRefGoogle Scholar
  7. 7.
    Sira-Ramirez H, Linares-Flores J (2014) On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Trans Control Syst Technol 22(5):2056–2063CrossRefGoogle Scholar
  8. 8.
    Zhang XG, Sun LZ, Zhao K, Sun L (2013) Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans Power Electron 28(3):1358–1365CrossRefGoogle Scholar
  9. 9.
    Lin CH, Lin CP (2013) The hybrid RFNN control for a PMSM drive electric scooter using rotor flux estimator. Appl Mech Mater 145(3):542–546zbMATHGoogle Scholar
  10. 10.
    Rahman MA, Vilathgamuwa M, Uddin MN (2003) Nonlinear control of interior permanent-magnet synchronous motor. IEEE Trans Indus Appl 39(2):408–416CrossRefGoogle Scholar
  11. 11.
    Zhou J, Wang Y (2005) Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor. Control Eng Pract 13(10):1259–1269CrossRefGoogle Scholar
  12. 12.
    Karabacak M, Eskikurt HI (2011) Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control. Math Comput Modell 53(9–10):2015–2030CrossRefzbMATHGoogle Scholar
  13. 13.
    Karabacak M, Eskikurt HI (2012) Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM. Appl Math Model 36(11):5199–5213MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schoonhoven GM, Uddin MN (2016) MTPA and FW based robust nonlinear speed control of IPMSM drive using Lyapunov stability criterion. IEEE Trans Indus Appl 52(2):4365–4374CrossRefGoogle Scholar
  15. 15.
    Butt S, Aschemann H (2017) Adaptive backstepping control for an engine cooling system with guaranteed parameter convergence under mismatched parameter uncertainties. Control Eng Pract 64(7):195–204CrossRefGoogle Scholar
  16. 16.
    Hamida MA, Leon JD, Glumineauc A (2017) Experimental sensorless control for IPMSM by using integral backstepping strategy and adaptive high gain observer. Control Eng Pract 59(2):64–76CrossRefGoogle Scholar
  17. 17.
    Lin FJ, Chang CK, Huang PK (2007) FPGA-based adaptive backstepping sliding-mode control for linear induction motor drive. IEEE Trans Power Electron 22(4):1222–1231CrossRefGoogle Scholar
  18. 18.
    Lin CK, Liu TH, Fu LC (2011) Adaptive backstepping PI sliding-mode control for interior permanent magnet synchronous motor drive systems. In: Proceedings of American Control Conference, San Francisco, CA, USA, pp 4075–4080Google Scholar
  19. 19.
    Shi HY, Feng Y, Yu XH (2010) Adaptive backstepping hybrid terminal sliding-mode control for permanent magnet synchronous motor. In: Proceedings of the 11th international workshop on variable structure systems, Mexico City, Mexico, pp 272–276Google Scholar
  20. 20.
    Yu J, Ma Y, Yu H, Lin C (2016) Reduced-order observer-based adaptive fuzzy tracking control for chaotic permanent magnet synchronous motors. Neurocomputing 214(11):201–209CrossRefGoogle Scholar
  21. 21.
    Yu J, Shi S, Dong WJ (2018) Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering. IEEE Trans Fuzzy Syst 26(1):46–55CrossRefGoogle Scholar
  22. 22.
    Chen WH, Yang J, Guo L, Li SH (2016) Disturbance-observer-based control and related methods—an overview. IEEE Trans Indus Electron 63(2):1083–1095CrossRefGoogle Scholar
  23. 23.
    Yang J, Chen WH, Li SH, Guo L (2016) Disturbance/uncertainty estimation and attenuation techniques in PMSM drives—a survey. IEEE Trans Indus Electron 64(4):3273–3285CrossRefGoogle Scholar
  24. 24.
    Mohamed YA-RI (2007) Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer. IEEE Trans Indus Electron 44(4):1981–1988CrossRefGoogle Scholar
  25. 25.
    Errouissi R, Ouhrouche M, Chen W (2012) Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with anti-windup compensator. IEEE Trans Indus Electron 59(8):3078–3088CrossRefGoogle Scholar
  26. 26.
    Liu H, Li S (2012) Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans Indus Electron 59(2):1171–1183CrossRefGoogle Scholar
  27. 27.
    Linares-Flores J, Garcła-Rodrłguez C, Sira-Ramłrez H, Ramłrez-Cardenas O (2015) Robust backstepping tracking controller for low-speed PMSM positioning system: design, analysis, and implementation. IEEE Trans Indus Inform 11(5):1130–1141CrossRefGoogle Scholar
  28. 28.
    Sun H, Guo L (2014) Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances. J Franklin Inst 351(2):1027–1041MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sun H, Li S, Yang J, Guo L (2014) Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances. IET Control Theory Appl 8(17):1852–1865CrossRefGoogle Scholar
  30. 30.
    Chen Y, Wang XJ, Li M, Liu X (2017) Disturbance observer-based backstepping control for permanent magnet synchronous motor. In: Proceedings of Chinese Automation Congress (CAC), Jinan, China, pp 1–6Google Scholar
  31. 31.
    Liu XD, Yu HS, Yu JP, Zhao L (2018) Combined speed and current terminal sliding mode control with nonlinear disturbance observer for PMSM drive. IEEE Access 6:29594–29601CrossRefGoogle Scholar
  32. 32.
    Yang J, Chen WH, Li SH (2011) Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl 5(18):2053–2062MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang J, Li SH, Chen WH (2012) Nonlinear disturbance observer-based control for multi-input multi-output nonlinear systems subject to mismatching condition. Int J Control 85(8):1071–1082MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Korean Institute of Electrical Engineers 2019

Authors and Affiliations

  1. 1.College of AutomationQingdao UniversityQingdaoChina
  2. 2.School of Control Science and EngineeringShandong UniversityJinanChina

Personalised recommendations