Advertisement

Soil Ecology Letters

, Volume 1, Issue 3–4, pp 94–104 | Cite as

Arbuscular mycorrhiza and plant chromium tolerance

  • Songlin Wu
  • Xin Zhang
  • Longbin Huang
  • Baodong ChenEmail author
Review
  • 202 Downloads

Abstract

Arbuscular mycorrhizal (AM) fungi are ubiquitous soil fungi that form symbiotic associations with most terrestrial plants. The growth and functions of AM fungi depend on carbohydrates supplied by the plants, in return, the fungi assist the plants to acquire mineral nutrients (e.g., phosphorus) from soil. The AM symbiosis also improves plant survival in various unfavorable environments, such as metal (loid) contaminated soil. It has been well demonstrated that AM symbiosis improved plant adaptation to Cr contamination, which would have a great potential in phytoremediation and ecological restoration of Cr contaminated soils. In this paper, we have reviewed the role of AM fungi in alleviation of Cr phytotoxicity and associated factors influencing plant Cr tolerance. AM symbiosis improves plant Cr tolerance through its direct roles in Cr stabilization and transformation and indirect roles via AM symbiosis mediated nutrient acquisition and physiological regulation. Future research on physiological and molecular mechanisms underlying Cr behavior and detoxification in AM symbiosis, as well as potential use of AM fungi in ecological restoration and agriculture production in Cr contaminated soils were also proposed.

Keywords

Arbuscular mycorrhizal fungi Heavy metal Chromium Tolerance Translocation and transformation Bioremediation 

Notes

Acknowledgements

This study was supported by National Key Research and Development Program of China (2016YFD0800400) and the National Natural Science Foundation of China (21677164).

References

  1. Al-Ghamdi, A.A.M., Jais, H.M., 2012. Interaction between arbuscular mycorrhiza and heavy metals in the rhizosphere and roots of Juniperus procera. International Journal of Agriculture and Biology, 14, 69–74.Google Scholar
  2. Aldrich, M.V., Gardea-Torresdey, J.L., Peralta-Videa, J.R., Parsons, J. G., 2003. Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Environmental Science & Technology, 37, 1859–1864.CrossRefGoogle Scholar
  3. Allen, J.W., Shachar-Hill, Y., 2009. Sulfur transfer through an arbuscular mycorrhiza. Plant Physiology, 149, 549–560.CrossRefGoogle Scholar
  4. Aloui, A., Recorbet, G., Gollotte, A., Robert, F., Valot, B., Gianinazzi-Pearson, V., Aschi-Smiti, S., Dumas-Gaudot, E., 2009. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics, 9, 420–433.CrossRefGoogle Scholar
  5. Appenroth, K.J., Bischoff, M., Gabryś, H., Stoeckel, J., Swartz, H.M., Walczak, T., Winnefeld, K., 2000. Kinetics of chromium(V) formation and reduction in fronds of the duckweed Spirodela polyrhiza-a low frequency EPR study. Journal of Inorganic Biochemistry, 78, 235–242.CrossRefGoogle Scholar
  6. Arias, J.A., Peralta-Videa, J.R., Ellzey, J.T., Ren, M., Viveros, M.N., Gardea-Torresdey, J.L., 2010a. Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68, 139–148.CrossRefGoogle Scholar
  7. Arias, J.A., Peralta-Videa, J.R., Ellzey, J.T., Viveros, M.N., Ren, M., Mokgalaka-Matlala, N.S., Castillo-Michel, H., Gardea-Torresdey, J. L., 2010b. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola. Environmental Science & Technology, 44, 7272–7279.CrossRefGoogle Scholar
  8. Arshad, M., Ali, S., Noman, A., Ali, Q., Rizwan, M., Farid, M., Irshad, M.K., 2016. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science, 62, 533–546.CrossRefGoogle Scholar
  9. Audet, P., Charest, C., 2007. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environmental Pollution, 147, 609–614.CrossRefGoogle Scholar
  10. Azcón, R., del Carmen Perálvarez, M., Biro, B., Roldán A., Ruíz-Lozano J. M., 2009. Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste. Applied Soil Ecology, 41, 168–177.CrossRefGoogle Scholar
  11. Biro, I., Nemeth, T., Takacs, T., 2009. Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils. Communications in Soil Science and Plant Analysis 40, 227–239.CrossRefGoogle Scholar
  12. Bothe, H., Regvar, M., Turnau, K., 2010. Arbuscular mycorrhiza, heavy metal, and salt tolerance. In: Sherameti I and Varma A (ed.) Soil Heavy Metals, Springer, Berlin Heidelberg, pp 87–111.CrossRefGoogle Scholar
  13. Carbonnel, S., Gutjahr, C., 2014. Control of arbuscular mycorrhiza development by nutrient signals. Frontiers of Plant Science, 5, 462.CrossRefGoogle Scholar
  14. Catarecha, P., Segura, M.D., Franco-Zorrilla, J.M., García-Ponce, B., Lanza, M., Solano, R., Paz-Ares, J., Leyva, A., 2007. A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell, 19, 1123–1133.CrossRefGoogle Scholar
  15. Chen, B., Nayuki, K., Kuga, Y., Zhang, X., Wu, S., Ohtomo, R., 2018. Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes and Environments, 33, 257–263.CrossRefGoogle Scholar
  16. Chen, B., Roos, P., Borggaard, O.K., Zhu, Y.G., Jakobsen, I., 2005b. Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytologist, 165, 591–598.CrossRefGoogle Scholar
  17. Chen, B., Tang, X., Zhu, Y., Christie, P., 2005a. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation. Science in China Series C, 48, 156–164.CrossRefGoogle Scholar
  18. Chen, B., Xiao, X., Zhu, Y.G., Smith, F.A., Xie, Z.M., Smith, S.E., 2007b. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379, 226–234.CrossRefGoogle Scholar
  19. Chen, B.D., Li, X.L., Tao, H.Q., Christie, P., Wong, M.H., 2003. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 50, 839–846.CrossRefGoogle Scholar
  20. Chen, B.D., Zhu, Y.G., Duan, J., Xiao, X.Y., Smith, S.E., 2007a. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 147, 374–380.CrossRefGoogle Scholar
  21. Chen, X., Wu, C., Tang, J., Hu, S., 2005c. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 60, 665–671.CrossRefGoogle Scholar
  22. Christie, P., Li, X., Chen, B., 2004. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261, 209–217.CrossRefGoogle Scholar
  23. Chu, Q., Wang, X., Yang, Y., Chen, F., Zhang, F., Feng, G., 2013. Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza, 23, 497–505.CrossRefGoogle Scholar
  24. Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., Sgorbati, S., Berta, G., 2005. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59, 21–29.CrossRefGoogle Scholar
  25. Cornejo, P., Meier, S., Borie, G., Rillig, M.C., Borie, F., 2008. Glomalinrelated soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment, 406, 154–160.CrossRefGoogle Scholar
  26. Coughlan, A.P., Dalpe, Y., Lapointe, L., Piché, Y., 2000. Soil pHinduced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Canadian Journal of Forest Research, 30, 1543–1554.CrossRefGoogle Scholar
  27. Davies, F.T. Jr, Puryear, J.D., Newton, R.J., Egilla, J.N., Saraiva Grossi, J.A., 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Journal of Plant Physiology, 158, 777–786.CrossRefGoogle Scholar
  28. Davies, F.T. Jr, Puryear, J.D., Newton, R.J., Egilla, J.N., Saraiva Grossi, J.A., 2002. Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, 25, 2389–2407.CrossRefGoogle Scholar
  29. de María Guillén-Jiménez, F., Morales-Barrera, L., Morales-Jiménez, J., Hernández-Rodríguez, C.H., Cristiani-Urbina, E., 2008. Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery wastewater. Journal of Industrial Microbiology & Biotechnology, 35, 1277–1287.CrossRefGoogle Scholar
  30. de Oliveira, L.M., Lessl, J.T., Gress, J., Tisarum, R., Guilherme, L.R. G., Ma, L.Q., 2015. Chromate and phosphate inhibited each other’s uptake and translocation in arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, 197, 240–246.CrossRefGoogle Scholar
  31. Dietterich, L.H., Gonneau, C., Casper, B.B., 2017. Arbuscular mycorrhizal colonization has little consequence for plant heavy metal uptake in contaminated field soils. Ecological Applications, 27, 1862–1875.CrossRefGoogle Scholar
  32. Dong, Y., Zhu, Y.G., Smith, F.A., Wang, Y., Chen, B., 2008. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 155, 174–181.CrossRefGoogle Scholar
  33. Du, J., Yan, C., Li, Z., 2014. Phosphorus and cadmium interactions in Kandelia obovata (S. L.) in relation to cadmium tolerance. Environmental Science and Pollution Research International, 21, 355–365.CrossRefGoogle Scholar
  34. Estaun, V., Cortes, A., Velianos, K., Camprubí, A., Calvet, C., 2010. Effect of chromium contaminated soil on arbuscular mycorrhizal colonisation of roots and metal uptake by Plantago lanceolata. Spanish Journal of Agricultural Research, 8, S109–S115.CrossRefGoogle Scholar
  35. Ferrol, N., Tamayo, E., Vargas, P., 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany, 67, 6253–6265.CrossRefGoogle Scholar
  36. Gardezi, A.K., Barceló-Quintal, I.D., Cetina-Alcalá, V.M., et al, (2005) Phytoremediation by Leucaena leucocephala in association with arbuscular endomycorrhiza and rhizobium in soil polluted by Cr. In: Callaos et al (ed) The 9th World Multiconference on Systemics, Cybernetics and Informatics. Orlando, Florida, USA, pp 289–298.Google Scholar
  37. Garg, N., Chandel, S., 2012. Role of Arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp under NaCl and Cd stresses. Journal of Plant Growth Regulation, 31, 292–308.CrossRefGoogle Scholar
  38. Gil-Cardeza, M.L., Ferri, A., Cornejo, P., Gomez, E., 2014. Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction. Science of the Total Environment, 493, 828–833.CrossRefGoogle Scholar
  39. González-Chávez, M.C., Carrillo-González, R., Gutiérrez-Castorena, M.C., 2009. Natural attenuation in a slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 161, 1288–1298.CrossRefGoogle Scholar
  40. González-Chávez, M.C., Carrillo-González, R., Wright, S.F., Nichols, K.A., 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130, 317–323.CrossRefGoogle Scholar
  41. González-Guerrero, M., Melville, L.H., Ferrol, N., Lott, J.N., Azcón-Aguilar, C., Peterson, R.L., 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology, 54, 103–110.CrossRefGoogle Scholar
  42. Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., Bücking, H., Lammers, P.J., Shachar-Hill, Y., 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819–823.CrossRefGoogle Scholar
  43. Holland, S.L., Avery, S.V., 2011. Chromate toxicity and the role of sulfur. Metallomics, 3, 1119–1123.CrossRefGoogle Scholar
  44. Jiang, Y, Wang, W, Xie, QLiu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., Wang, E., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356, 1172–1175.CrossRefGoogle Scholar
  45. Johansson, J.F., Paul, L.R., Finlay, R.D., 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48, 1–13.CrossRefGoogle Scholar
  46. Karandashov, V., Bucher, M., 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science 10, 22–29.CrossRefGoogle Scholar
  47. Khan, A.G., 2001. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environment International, 26, 417–423.CrossRefGoogle Scholar
  48. Kováčik, J., Babula, P., Klejdus, B., Hedbavny, J., 2013. Chromium uptake and consequences for metabolism and oxidative stress in chamomile plants. Journal of Agricultural and Food Chemistry, 61, 7864–7873.CrossRefGoogle Scholar
  49. Kuga, Y., Saito, K., Nayuki, K., Peterson, R.L., Saito, M., 2008. Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate. New Phytologist, 178, 189–200.CrossRefGoogle Scholar
  50. Lenoir, I., Fontaine, J., Lounès-Hadj Sahraoui, A., 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry, 123, 4–15.CrossRefGoogle Scholar
  51. Leyval, C., Singh, B.R., Joner, E.J., 1995. Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water, Air, and Soil Pollution, 84, 203–216.CrossRefGoogle Scholar
  52. Leyval, C., Turnau, K., Haselwandter, K., 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.CrossRefGoogle Scholar
  53. Long, L.K., Yao, Q., Guo, J., Yang, R.H., Huang, Y.H., Zhu, H.H., 2010. Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. European Journal of Soil Biology, 46, 288–294.CrossRefGoogle Scholar
  54. Losi, M., Amrhein, C., Frankenberger, W. Jr, (1994) Environmental biochemistry of chromium. In: Ware GW (ed) Reviews of Environmental Contamination and Toxicology, Springer, New York, NY, USA, pp 91–121.CrossRefGoogle Scholar
  55. Ma, Y., Dickinson, N.M., Wong, M.H., 2006. Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology & Biochemistry, 38, 1403–1412.CrossRefGoogle Scholar
  56. Malcová, R., Vosátka, M., Gryndler, M., 2003. Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Applied Soil Ecology, 23, 55–67.CrossRefGoogle Scholar
  57. Miransari, M., 2011. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 89, 917–930.CrossRefGoogle Scholar
  58. Nakatani, A.S., Mescolotti, D.L.C., Nogueira, M.A., Martines, A.M., Miyauchi, M.Y.H., Stürmer, S.L., Cardoso, E.J.B.N., 2011. Dosagedependent shift in the spore community of arbuscular mycorrhizal fungi following application of tannery sludge. Mycorrhiza, 21, 515–522.CrossRefGoogle Scholar
  59. Nayuki, K., Chen, B., Ohtomo, R., Kuga, Y., 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments, 29, 60–66.CrossRefGoogle Scholar
  60. Nichols, K., 2003. Characterization of glomalinda glycoprotein produced by arbuscular mycorrhizal fungi. PhD Dissertation, University of Maryland, College Park, Maryland.Google Scholar
  61. Orłowska, E., Przybyłowicz, W., Orlowski, D., Turnau, K., Mesjasz-Przybyłowicz, J., 2011. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution, 159, 3730–3738.CrossRefGoogle Scholar
  62. Pereira, Y., Lagniel, G., Godat, E., Baudouin-Cornu, P., Junot, C., Labarre, J., 2008. Chromate causes sulfur starvation in yeast. Toxicological Sciences, 106, 400–412.CrossRefGoogle Scholar
  63. Rahmaty, R., Khara, J., 2011. Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turkish Journal of Biology, 35, 51–58.Google Scholar
  64. Repetto, O., Bestel-Corre, G., Dumas-Gaudot, E., Berta, G., Gianinazzi-Pearson, V., Gianinazzi, S., 2003. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytologist, 157, 555–567.CrossRefGoogle Scholar
  65. Rufyikiri, G., Thiry, Y., Declerck, S., 2003. Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytologist, 158, 391–399.CrossRefGoogle Scholar
  66. Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S., 2005. Chromium toxicity in plants. Environment International, 31, 739–753.CrossRefGoogle Scholar
  67. Shanker, A.K., Pathmanabhan, G., 2004. Speciation dependant antioxidative response in roots and leaves of sorghum (Sorghum bicolor (L.) Moench cv CO 27) under Cr(III) and Cr (VI) stress. Plant and Soil, 265, 141–151.CrossRefGoogle Scholar
  68. Sharma, D.C., Sharma, C.P., Tripathi, R.D., 2003. Phytotoxic lesions of chromium in maize. Chemosphere, 51, 63–68.CrossRefGoogle Scholar
  69. Singh, J., Kumar, M., Vyas, A., 2014. Healthy response from chromium survived pteridophytic plant-Ampelopteris prolifera with the interaction of mycorrhizal fungus-Glomus deserticola. International Journal of Phytoremediation, 16, 524–535.CrossRefGoogle Scholar
  70. Singh, S., Parihar, P., Singh, R., Prasad, S.M., 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers of Plant Science, 6, 1143.Google Scholar
  71. Skeffington, R.A., Shewry, P.R., Peterson, P.J., 1976. Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta, 132, 209–214.CrossRefGoogle Scholar
  72. Smith, S.E., Read, D., (2008) Mycorrhizal Symbiosis. Academic Press, San Diego.Google Scholar
  73. Subramanian, K.S., Tenshia, V., Jayalakshmi, K., Ramachandran, V., 2009. Biochemical changes and zinc fractions in arbuscular mycorrhizal fungus (Glomus intraradices) inoculated and uninoculated soils under differential zinc fertilization. Applied Soil Ecology, 43, 32–39.CrossRefGoogle Scholar
  74. Sun, Y., Zhang, X., Wu, Z., Hu, Y., Wu, S., Chen, B., 2016. The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. Journal of Environmental Sciences (China), 39, 110–118.CrossRefGoogle Scholar
  75. Vodnik, D., Grcman, H., Macek, I., van Elteren, J.T., Kovacevic, M., 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392, 130–136.CrossRefGoogle Scholar
  76. Wang, F., 2017. Occurrence of arbuscular mycorrhizal fungi in miningimpacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology, 47, 1901–1957.CrossRefGoogle Scholar
  77. Weiersbye, I.M., Straker, C.J., Przybylowicz, W.J., 1999. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nuclear Instruments and Methods in Physics Research Section B, 158, 335–343.CrossRefGoogle Scholar
  78. Weissenhorn, I., Leyval, C., Berthelin, J., 1995. Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biology and Fertility of Soils, 19, 22–28.CrossRefGoogle Scholar
  79. Wu, S., Vosátka, M., Vogel-Mikus, K., Kavčič, A., Kelemen, M., Šepec, L., Pelicon, P., Skála, R., Valero Powter, A.R., Teodoro, M., Michálková, Z., Komárek, M., 2018b. Nano zero-valent iron mediated metal (loid) uptake and translocation by arbuscular mycorrhizal symbioses. Environmental Science & Technology, 52, 7640–7651.CrossRefGoogle Scholar
  80. Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., Lv, J., Li, G., Zhang, Z., Zhang, J., Zheng, L., Zhen, X., Chen, B., 2016b. Chromium immobilization by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses. Journal of Hazardous Materials, 316, 34–42.CrossRefGoogle Scholar
  81. Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., Su, D., Lv, J., Li, G., Zhang, Z., Zheng, L., Zhang, J., Chen, B., 2015. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS. Environmental Science & Technology, 49, 14036–14047.CrossRefGoogle Scholar
  82. Wu, S.L., Chen, B.D., Sun, Y.Q., Ren, B.H., Zhang, X., Wang, Y.S., 2014. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils. Environmental Toxicology and Chemistry, 33, 2105–2113.CrossRefGoogle Scholar
  83. Wu, S.L., Hu, Y.J., Zhang, X., Sun, Y., Wu, Z., Li, T., Lv, J., Li, J., Zhang, J., Zheng, L., Huang, L., Chen, B., 2018a. Chromium detoxification in arbuscular mycorrhizal symbiosis mediated by sulfur uptake and metabolism. Environmental and Experimental Botany, 147, 43–52.CrossRefGoogle Scholar
  84. Wu, S.L., Zhang, X., Chen, B.D., 2013. Effects of Arbuscular mycorrhizal fungi on heavy metal translocation and transformation in the soil-plant continuum. Asian Journal of Ecotoxicology, 8, 847–856 (in Chinese).Google Scholar
  85. Wu, S.L., Zhang, X., Chen, B.D., Wu, Z., Li, T., Hu, Y., Sun, Y., Wang, Y., 2016a. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany, 122, 10–18.CrossRefGoogle Scholar
  86. Yang, Y., Han, X., Liang, Y., Ghosh, A., Chen, J., Tang, M., 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One, 10, e0145726.CrossRefGoogle Scholar
  87. Yu, Y., Zhang, S., Huang, H., Luo, L., Wen, B., 2009. Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. Journal of Agricultural and Food Chemistry, 57, 3695–3701.CrossRefGoogle Scholar
  88. Yu, Y., Zhang, S.Z., Huang, H.L., Wu, N., 2010. Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi. Communications in Soil Science and Plant Analysis, 41, 735–743.CrossRefGoogle Scholar
  89. Yu, Y.G., Zhao, B., 2008. The interaction and effect of two species of arbuscular mycorrhizal fungi on the growth of Astragalus sinicus L at different pH level. Mycosystema, 27, 209–216 (in Chinese).Google Scholar
  90. Zarei, M., Hempel, S., Wubet, T., Schäfer, T., Savaghebi, G., Jouzani, G.S., Nekouei, M.K., Buscot, F., 2010. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158, 2757–2765.CrossRefGoogle Scholar
  91. Zayed, A., Lytle, C.M., Qian, J.H., Terry, N., 1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206, 293–299.CrossRefGoogle Scholar
  92. Zhang, S., Feng, G., Li, X., 2005. The direct effect of cadmium in soil on growth of arbuscular mycorrhizal fungi Glomus mosseae. Mycosystema, 24, 576–581 (in Chinese).Google Scholar
  93. Zhang, X., Ren, B.H., Wu, S.L., Sun, Y.Q., Lin, G., Chen, B.D., 2015. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Chemosphere, 119, 224–230.Google Scholar
  94. Zhang, X.H., Lin, A.J., Zhang, X., Guo, L.P. 2012. The effects of arbuscular mycorrhizal fungi (AMF) on forms of Pb in the upland rice rhizosphere. Chinese Agricultural Science Bulletin, 28, 24–29 (in Chinese).Google Scholar

Copyright information

© Higher Education Press 2019

Authors and Affiliations

  • Songlin Wu
    • 1
    • 2
  • Xin Zhang
    • 1
  • Longbin Huang
    • 2
  • Baodong Chen
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Environment Centres (CMLR), Sustainable Minerals InstituteThe University of QueenslandBrisbaneAustralia
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations