Advertisement

Evaluation of composite PAN fibers incorporated with carbon nanotubes and titania and their performance during the microwave-induced pre-oxidation

  • Tienah H. H. Elagib
  • Elwathig A. M. Hassan
  • Baihua Liu
  • Keqing HanEmail author
  • Muhuo YuEmail author
Original Article
  • 5 Downloads

Abstract

The composite PAN fibers which incorporated with CNTs and Titania were prepared by mean of wet spinning. These fibers were then pre-oxidized with microwave heating in an air atmosphere. A combination of characterizations was carried out to study the impact of nanoparticles fillers on the properties of as-spun fibers and their performance during the microwave pre-oxidation. The addition of an equal amount of fillers made obvious changes in the chemical and crystalline structure, consequently improves the strength, and this could lower the capability to creep over a wide range of temperatures in the subsequent processes. FTIR and NMR analyses results of the pre-oxidized fibers exhibited clear changes in the PAN structure, where the dehydrogenation reaction and the degree of cyclization were investigated. Additional confirmation of the occurrence of cyclization reaction was achieved by XRD and thermal analysis. According to the TGA results, the pre-oxidized CNT1/Ti-PAN fibers exhibit greater thermal stability suggesting high carbon content and good quality could result in the dependent carbon fibers.

Graphic abstract

Keywords

Carbon nanotube (CNT) Titania (TiO2Polyacrylonitrile (PAN) Spinning Microwave 

Notes

Supplementary material

42823_2019_92_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1753 kb)

References

  1. 1.
    Aggour Y, Aziz M (2000) Degradation of polyacrylonitrile by low energy ion beam and UV radiation. Polym Test 19(3):261–267CrossRefGoogle Scholar
  2. 2.
    Liu W, Wang M, Xing Z, Wu G (2012) The free radical species in polyacrylonitrile fibers induced by γ-radiation and their decay behaviors. Radiat Phy Chem 81(7):835–839CrossRefGoogle Scholar
  3. 3.
    Fitzer E, Frohs W, Heine M (1986) Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24(4):387–395CrossRefGoogle Scholar
  4. 4.
    Zhao W, Lu Y, Jiang J, Hu L, Zhou L (2015) The effect of γ-ray irradiation on the microstructure and thermal properties of polyacrylonitrile fibers. RSC Adv 5(30):23508–23518CrossRefGoogle Scholar
  5. 5.
    Qin X, Lu Y, Xiao H, Hao Y, Pan D (2011) Improving preferred orientation and mechanical properties of PAN-based carbon fibers by pretreating precursor fibers in nitrogen. Carbon 49(13):4598–4600CrossRefGoogle Scholar
  6. 6.
    Qin X, Lu Y, Xiao H, Zhao W (2013) Effect of heating and stretching polyacrylonitrile precursor fibers in steam on the properties of stabilized fibers and carbon fibers. Polym Eng Sci 53(4):827–832CrossRefGoogle Scholar
  7. 7.
    Liu W, Wang M, Xing Z, Qi Y, Wu G (2012) Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process. Radiat Phy Chem 81(6):622–627CrossRefGoogle Scholar
  8. 8.
    Pawde S, Deshmukh K (2008) Influence of γ irradiation on the properties of polyacrylonitrile films. J Appl Polym Sci 110(5):2569–2578CrossRefGoogle Scholar
  9. 9.
    Park M, Choi Y, Lee S-Y, Kim H-Y, Park S-J (2014) Influence of electron-beam irradiation on thermal stabilization process of polyacrylonitrile fibers. J Ind Eng Chem 20(4):1875–1878CrossRefGoogle Scholar
  10. 10.
    Yuan H, Wang Y, Liu P, Yu H, Ge B, Mei Y (2011) Effect of electron beam irradiation on polyacrylonitrile precursor fibers and stabilization process. J App Polym Sci 122(1):90–96CrossRefGoogle Scholar
  11. 11.
    Naskar AK, Walker RA, Proulx S, Edie DD, Ogale AA (2005) UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer. Carbon 43(5):1065–1072CrossRefGoogle Scholar
  12. 12.
    Paiva M, Kotasthane P, Edie D, Ogale A (2003) UV stabilization route for melt-processible PAN-based carbon fibers. Carbon 41(7):1399–1409CrossRefGoogle Scholar
  13. 13.
    Murthy MR, Radhakrishna S (1983) Radiation damage in polyacrylonitrile. Pramana 20(1):85–90CrossRefGoogle Scholar
  14. 14.
    Miao P, Wu D, Zeng K, Xu G, Ce Zhao, Yang G (2010) Influence of electron beam pre-irradiation on the thermal behaviors of polyacrylonitrile. Polym Degrad Stab 95(9):1665–1671CrossRefGoogle Scholar
  15. 15.
    Dietrich J, Hirt P, Herlinger H (1996) Electron-beam-induced cyclisation to obtain C-fibre precursors from polyacrylonitrile homopolymers. Eur Polym J 32(5):617–623CrossRefGoogle Scholar
  16. 16.
    Luo J, Hunyar C, Feher L, Link G, Thumm M, Pozzo P (2004) Potential advantages for millimeter-wave heating of powdered metals. Int J Infrared Millim Waves 25(9):1271–1283CrossRefGoogle Scholar
  17. 17.
    Obermayer D, Gutmann B, Kappe CO (2009) Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angewandte Chem 121(44):8471–8474CrossRefGoogle Scholar
  18. 18.
    Liu J, Xiao S, Shen Z, Xu L, Zhang L, Peng J (2018) Study on the oxidative stabilization of polyacrylonitrile fibers by microwave heating. Polym Degrad Stab 150:86–91CrossRefGoogle Scholar
  19. 19.
    Zhang C, Liu J, Guo S, Xiao S, Shen Z, Xu L (2018) Comparison of microwave and conventional heating methods for oxidative stabilization of polyacrylonitrile fibers at different holding time and heating rate. Ceram Int 44(12):14377–14385CrossRefGoogle Scholar
  20. 20.
    Elagib TH, Hassan EA, Fan C, Han K, Yu M (2018) Microwave pre-oxidation for polyacrylonitrile precursor coated with nano-carbon black. Polymer Eng Sci 59(3):457–464CrossRefGoogle Scholar
  21. 21.
    Elagib TH, Hassan EA, Fan C, Han K, Yu M (2018) Single and hybrid electromagnetic absorbing coatings on polyacrylonitrile precursor to motivate the microwave pre-oxidation. Polym Degrad Stab 158:64–71CrossRefGoogle Scholar
  22. 22.
    Jain R, Minus ML, Chae HG, Kumar S (2010) Processing, structure, and properties of PAN/MWNT composite fibers. Macromol Mater Eng 295(8):742–749CrossRefGoogle Scholar
  23. 23.
    Chou T-W, Gao L, Thostenson ET, Zhang Z, Byun J-H (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70(1):1–19CrossRefGoogle Scholar
  24. 24.
    Newcomb BA, Gulgunje PV, Gupta K, Kamath MG, Liu Y, Giannuzzi LA, Chae HG, Kumar S (2015) Processing, structure, and properties of gel spun PAN and PAN/CNT fibers and gel spun PAN based carbon fibers. Polym Eng Sci 55(11):2603–2614CrossRefGoogle Scholar
  25. 25.
    Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos Sci Technol 69(3–4):406–413CrossRefGoogle Scholar
  26. 26.
    Chae HG, Minus ML, Rasheed A, Kumar S (2007) Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer 48(13):3781–3789CrossRefGoogle Scholar
  27. 27.
    Shaowei L, Keming M, Xiaoqiang W, Xuhai X, Weikai X, Caixia J (2015) Fabrication and characterization of polymer composites surface coated Fe3O4/MWCNTs hybrid buckypaper as a novel microwave‐absorbing structure. J Appl Polym Sci 132 (20)Google Scholar
  28. 28.
    Zhang H, Quan L, Shi F, Li C, Liu H, Xu L (2018) Rheological behavior of amino-functionalized multi-walled carbon nanotube/polyacrylonitrile concentrated solutions and crystal structure of composite fibers. Polymers 10(2):186CrossRefGoogle Scholar
  29. 29.
    Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2008) Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth Met 158(6):251–258CrossRefGoogle Scholar
  30. 30.
    Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639CrossRefGoogle Scholar
  31. 31.
    Zhao Y-q, Wang C-g, Bai Y-j, Chen G-w, Jing M, Zhu B (2009) Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere. J Colloid Interface Sci 329(1):48–53CrossRefGoogle Scholar
  32. 32.
    Lee S, Kim J, Ku B-C, Kim J, Joh H-I (2012) Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv Chem Eng Sci 2(02):275CrossRefGoogle Scholar
  33. 33.
    Fu Z, Ma J, Deng Y, Wu G, Cao C, Zhang H (2015) Structural evolution of poly (acrylonitrile-co-dimethyl itaconate) copolymer during thermal oxidative stabilization. Polym Adva Technol 26(4):322–329CrossRefGoogle Scholar
  34. 34.
    Karacan İ, Erdoğan G (2012) An investigation on structure characterization of thermally stabilized polyacrylonitrile precursor fibers pretreated with guanidine carbonate prior to carbonization. Polym Eng Sci 52(5):937–952CrossRefGoogle Scholar
  35. 35.
    Dalton S, Heatley F, Budd PM (1999) Thermal stabilization of polyacrylonitrile fibres. Polymer 40(20):5531–5543CrossRefGoogle Scholar
  36. 36.
    Kong L, Liu H, Cao W, Xu L (2014) PAN fiber diameter effect on the structure of PAN-based carbon fibers. Fibers Polym 15(12):2480–2488CrossRefGoogle Scholar
  37. 37.
    Wang Y, Xu L, Wang M, Pang W, Ge X (2014) Structural identification of polyacrylonitrile during thermal treatment by selective 13C labeling and solid-state 13C NMR spectroscopy. Macromolecules 47(12):3901–3908CrossRefGoogle Scholar
  38. 38.
    Zhao J, Zhang J, Zhou T, Liu X, Yuan Q, Zhang A (2016) New understanding on the reaction pathways of the polyacrylonitrile copolymer fiber pre-oxidation: online tracking by two-dimensional correlation FTIR spectroscopy. RSC Adv 6(6):4397–4409CrossRefGoogle Scholar
  39. 39.
    Fei J, Luo W, Huang J, Ouyang H, Wang H, Cao L (2015) Effect of hydrothermal modified carbon fiber through Diels-Alder reaction and its reinforced phenolic composites. RSC Adv 5(79):64450–64455CrossRefGoogle Scholar
  40. 40.
    Jain MK, Abhiraman A (1987) Conversion of acrylonitrile-based precursor fibres to carbon fibres. J Mater Sci 22(1):278–300CrossRefGoogle Scholar
  41. 41.
    Ogawa H, Saito K (1995) Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon 33(6):783–788CrossRefGoogle Scholar
  42. 42.
    Park O-K, Lee S, Joh H-I, Kim JK, Kang P-H, Lee JH, Ku B-C (2012) Effect of functional groups of carbon nanotubes on the cyclization mechanism of polyacrylonitrile (PAN). Polymer 53(11):2168–2174CrossRefGoogle Scholar
  43. 43.
    Wang J, Hu L, Yang C, Zhao W, Lu Y (2016) Effects of oxygen content in the atmosphere on thermal oxidative stabilization of polyacrylonitrile fibers. RSC Adv 6(77):73404–73411CrossRefGoogle Scholar
  44. 44.
    Liu S, Han K, Chen L, Zheng Y, Yu M (2015) Influence of air circulation on the structure and properties of melt-spun PAN precursor fibers during thermal oxidation. RSC Adv 5(47):37669–37674CrossRefGoogle Scholar
  45. 45.
    Liu Y, Chae HG, Kumar S (2010) Stabilization of Gel-spun polyacrylonitrile/carbon nanotubes composite fibers. Part II: stabilization kinetics and effects of various chemical reactions, pp 59Google Scholar
  46. 46.
    Potter W, Scott G (1972) Initiation of low temperature degradation of polyacrylonitrile. Nat Phys Sci 236(63):30CrossRefGoogle Scholar
  47. 47.
    Ashkarran AA, Fakhari M, Hamidinezhad H, Haddadi H, Nourani MR (2015) TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity. J Mater Res Technol 4(2):126–132CrossRefGoogle Scholar
  48. 48.
    Hamid SBA, Tan TL, Lai CW, Samsudin EM (2014) Multiwalled carbon nanotube/TiO2 nanocomposite as a highly active photocatalyst for photodegradation of Reactive Black 5 dye. Chin J Catal 35(12):2014–2019.  https://doi.org/10.1016/S1872-2067(14)60210-2 CrossRefGoogle Scholar
  49. 49.
    Ji M, Wang C, Bai Y, Yu M, Wang Y (2007) Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization. Polym Bull 59(4):527–536CrossRefGoogle Scholar
  50. 50.
    Karacan I, Erdoğan G (2012) The role of thermal stabilization on the structure and mechanical properties of polyacrylonitrile precursor fibers. Fibers polym 13(7):855–863CrossRefGoogle Scholar
  51. 51.
    Ju A, Liu Z, Luo M, Xu H, Ge M (2013) Molecular design and pre-oxidation mechanism of acrylonitrile copolymer used as carbon fiber precursor. J Polym Res 20(12):318CrossRefGoogle Scholar
  52. 52.
    Ouyang Q, Cheng L, Wang H, Li K (2008) Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab 93(8):1415–1421CrossRefGoogle Scholar
  53. 53.
    Fitzer E, Müller D (1975) The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon 13(1):63–69CrossRefGoogle Scholar
  54. 54.
    Rangarajan P, Bhanu V, Godshall D, Wilkes G, McGrath J, Baird D (2002) Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers. Polymer 43(9):2699–2709CrossRefGoogle Scholar
  55. 55.
    Liu HC, Chien A-T, Newcomb BA, Liu Y, Kumar S (2015) Processing, structure, and properties of lignin-and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustaina Chem Eng 3(9):1943–1954CrossRefGoogle Scholar
  56. 56.
    Karacan I, Erdoğan G (2012) A study on structural characterization of thermal stabilization stage of polyacrylonitrile fibers prior to carbonization. Fibers Polym 13(3):329–338CrossRefGoogle Scholar
  57. 57.
    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393(1–2):1–11CrossRefGoogle Scholar
  58. 58.
    Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: Effect of carbon nanotubes on stabilization. Carbon 49(13):4466–4476CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.Faculty of Industrial EngineeringUniversity of GeziraWad MadaniSudan

Personalised recommendations