Advertisement

Composition of volatile components in the polycrystalline CVD diamond (by coupled gas chromatographic–mass spectrometric analysis)

  • Anatoly TomilenkoEmail author
  • Valeri Sonin
  • Taras Bul’bak
  • Aleksei Chepurov
Original Article
  • 2 Downloads

Abstract

The results of gas chromatography–mass spectrometry (GC–MS) demonstrate that the volatiles captured by diamond grown by chemical vapour deposition (CVD) technology contain hydrocarbons and their derivatives (72.2 rel. %). We have identified aliphatic (paraffins and olefins), cyclic (naphthenes and arenes) and oxygenated (alcohols, aldehydes, ketones and carboxylic acids) hydrocarbons, as well as nitrogenated and sulfonated compounds. Water, negligible amounts of CO2 and Ar were also detected among the volatile components.

Keywords

CVD diamond Micro inclusions Gas chromatography–mass spectrometry Hydrocarbons 

Notes

Acknowledgements

The authors thank two anonymous reviewers for the comprehensive reviewing of the manuscript. This work was supported by the Russian Science Foundation, project no. 17-17-01154 and Russian Foundation for Basic Research, project no. 18-05-00761.

References

  1. 1.
    Spear KL, Frenklach M (1994) High-temperature chemistry of CVD (chemical vapor deposition) diamond growth. Pure Appl Chem 66(9):1773CrossRefGoogle Scholar
  2. 2.
    Maeda H, Ohtsubo K, Kameta M, Saito T, Kusakabe K, Morooka S, Asano T (1998) Growth behavior of boron-doped diamond in microwave plasma-assisted chemical vapor deposition using trimethylboron as the dopant source. Diamond Relat Mater 7:88CrossRefGoogle Scholar
  3. 3.
    Battaile CC, Srolovitz DJ, Oleinik II, Pettifor DG, Sutton AP, Harris SJ, Butler JE (1999) Etching effects during the chemical vapor deposition of (100) diamond. J Chem Phys 111:4291CrossRefGoogle Scholar
  4. 4.
    Tallaire A, Collins AT, Charles D, Achard J, Sussmann R, Gicquel A, Newton ME, Edmonds AM, Cruddace RJ (2006) Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition. Diamond Relat Mater 15:1700CrossRefGoogle Scholar
  5. 5.
    Tyagi PK, Misra A, Unni KNN, Rai P, Singh MK, Palnitkar U, Misra DS, Le Normand F, Roy M, Kulshreshtha SK (2006) Step growth in single crystal diamond grown by microwave plasma chemical vapor deposition. Diamond Relat Mater 15:304CrossRefGoogle Scholar
  6. 6.
    Tallaire A, Achard J, Silva F, Brinza O, Gicquel A (2013) Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges. Comptes Rendus Phys 14:169CrossRefGoogle Scholar
  7. 7.
    The Element Six CVD Diamond Handbook. https://e6cvd.com/us/diamond-book-download
  8. 8.
    Jia X, Huang N, Guo Y, Liu L, Li P, Zhai Z, Yang B, Yuan Z, Shi D, Jiang X (2018) Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters. J Mater Sci Technol 34(12):2398–2406CrossRefGoogle Scholar
  9. 9.
    Silva J, Brinza F, Tallaire O, Gicquel A (2007) Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diamond Relat Mater 16:685CrossRefGoogle Scholar
  10. 10.
    Cheesman A, Harvey JN, Ashfold MNR (2008) Studies of carbon incorporation on the diamond {100} surface during chemical vapor deposition using density functional theory. J Phys Chem 112:11436CrossRefGoogle Scholar
  11. 11.
    Butler JE, Mankelevich YA, Cheesman A, Ma J, Ashfold MNR (2009) Understanding the chemical vapor deposition of diamond: recent progress. J Phys Condens Matter 21:364201CrossRefGoogle Scholar
  12. 12.
    Muller-Sebert W, Worner E, Fuchs F, Wild C, Koidl P (1996) Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Appl Phys Lett 68:759CrossRefGoogle Scholar
  13. 13.
    Chayahara A, Mokuno Y, Horino Y, Takasu Y, Kato H, Yoshikawa H, Fujimori N (2004) The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD. Diamond Relat Mater 13:1954CrossRefGoogle Scholar
  14. 14.
    Issaoui R, Achard J, Silva F, Tallaire A, Mille V, Gicquel A (2011) Influence of oxygen addition on the crystal shape of CVD boron doped diamond. Phys Status Solidi A 208:2023CrossRefGoogle Scholar
  15. 15.
    Lobaev MA, Gorbachev AM, Bogdanov SA, Vikharev AL, Radishev DB, Isaev VA, Chernov VV, Drozdov MN (2017) Influence of CVD diamond growth conditions on nitrogen incorporation. Diamond Relat Mater 72:1CrossRefGoogle Scholar
  16. 16.
    Tomilenko AA, Chepurov AI, Pal’yanov YN, Pokhilenko LN, Shebanin AP (1997) Volatile components in the upper mantle (from data on fluid inclusions). Russ Geol Geophys 38(1):294Google Scholar
  17. 17.
    Tomilenko AA, Chepurov AI, Pal’yanov YN, Shebanin AP, Sobolev NV (1998) Hydrocarbon inclusions in synthetic diamonds. Eur J Miner 10:1135CrossRefGoogle Scholar
  18. 18.
    Tomilenko AA, Ragozin AL, Shatsky VS, Shebanin AP (2001) Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl Earth Sci 379(5):571Google Scholar
  19. 19.
    Tomilenko AA, Kovyazin SV, Pokhilenko LN, Sobolev NV (2009) Primary hydrocarbon inclusions in garnet of diamondiferous eclogite from the Udachanaya kimberlite pipe, Yakutia. Dokl Earth Sci 426(1):695CrossRefGoogle Scholar
  20. 20.
    Navon O, Wirth R, Schmidt C, Jablon BM, Schreiber A, Emmanuel S (2017) Solid molecular nitrogen (δ-N2) inclusions in Juina diamonds: exsolution at the base of the transition zone. Earth Planet Sci Lett 464:237CrossRefGoogle Scholar
  21. 21.
    Tschauner O, Huang S, Greenberg E, Prakapenka VB, Ma C, Rossman GR, Shen AH, Zhang D, Newville M, Lanzirotti A, Tait K (2018) Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359:1136CrossRefGoogle Scholar
  22. 22.
    Wang W, Moses T, Linares RC, Shigley JE, Hall M, Butler JE (2003) Gem-quality synthetic diamonds grown by a chemical vapor deposition (CVD) method. Gems Gemol 39(4):268CrossRefGoogle Scholar
  23. 23.
    Tomilenko AA, Chepurov AI, Sonin VM, Bul’bak TA, Zhimulev EI, Chepurov AA, Timina TY, Pokhilenko NP (2015) The synthesis of methane and heavier hydrocarbons in the system graphite-iron-serpentine at 2 and 4 GPa and 1200ºC. High Temp High Press 44(6):451Google Scholar
  24. 24.
    Tomilenko AA, Bul’bak TA, Khomenko MO, Kuzmin DV, Sobolev NV (2016) The composition of volatile components in olivines from Yakutian kimberlites of various ages: evidence from gas chromatography–mass spectrometry. Dokl Earth Sci 468(2):626CrossRefGoogle Scholar
  25. 25.
    Sokol AG, Tomilenko AA, Bul’bak TA, Palyanova GA, Sokol IA, Palyanov YN (2017) Carbon and nitrogen speciation in N-poor COHN fluids at 6.3 GPa and 1100–1400 °C. Sci Rep 7(1):706.  https://doi.org/10.1038/s41598-017-00679-7 CrossRefGoogle Scholar
  26. 26.
    Sokol AG, Palyanov YN, Tomilenko AA, Bul’bak TA, Palyanova GA (2017) Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa. Earth Planet Sci Lett 460:234CrossRefGoogle Scholar
  27. 27.
    Carrington WA, Hanssen LM, Snail KA, Oakes DB, Butler JE (1989) Diamond growth in O2 + C2H4 and O2 + C2H2 flames. Metall Trans A 20:1282CrossRefGoogle Scholar
  28. 28.
    Tomilenko AA, Bul’bak TA, Chepurov AI, Sonin VM, Zhimulev EI, Pokhilenko NP (2018) Composition of Hydrocarbons in Synthetic Diamonds Grown in a Fe–Ni–C System (according to gas chromatography–mass spectrometry data). Dokl Earth Sci 481(2):1004CrossRefGoogle Scholar
  29. 29.
    Tomilenko AA, Zhimulev EI, Bul’bak TA, Sonin VM, Chepurov AI, Pokhilenko NP (2018) Peculiarities of the composition of volatiles of diamonds synthesized in the Fe–S–C system: data on gas chromatography–mass spectrometry. Dokl Earth Sci 482(1):1207CrossRefGoogle Scholar
  30. 30.
    Tomilenko AA, Bul’bak TA, Logvinova AM, Sonin VM, Sobolev NV (2018) The Composition Features of Volatile Components in Diamonds from the Placers in the Northeastern Part of the Siberian Platform by Gas Chromatography-Mass Spectrometry. Dokl Earth Sci 481(1):953CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  • Anatoly Tomilenko
    • 1
    Email author
  • Valeri Sonin
    • 1
  • Taras Bul’bak
    • 1
  • Aleksei Chepurov
    • 1
  1. 1.V.S. Sobolev Institute of Geology and MineralogySiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations