Processing and fundamental characterization of carbon fibers and cellulose nanocrystals derived from bagasse

  • Amina Abdel Meguid AttiaEmail author
  • Maged Shafik Antonious
  • Mona Abdel Hamid Shouman
  • Ahmed Ali Ahmed Nada
  • Khadiga Mohamed Abas
Original Article


Lignocellulosic materials such as agricultural residues have been identified as potential sustainable sources that can replace petroleum-based polymers. This study focused on the conversion of lignin extracted from bagasse to carbon fiber (CF) and cellulose nanocrystal (CNC). The highest extraction of lignin yield was achieved at 100 °C using 10% NaOH for 12 h. Carbon fibers were obtained by electro-spinning of bagasse lignin blended with polyvinyl alcohol (PVA) (11 wt/v %) followed by thermo-stabilization (250 °C) in an oxidizing atmosphere and further carbonization in an inert atmosphere (850 °C). Conventional hydrolysis process was used to extract cellulose nanocrystal from bagasse pulp. Morphological (scanning electron microscopy, SEM), spectral (Fourier transform infrared, FTIR) spectroscopy, elemental analysis, thermal characterization and surface area measurements have been carried out. Figures originated by SEM showed that CF ranges from 145 to 204 nm, while stabilized bagasse cellulose nanocrystal (SCNC) appeared as rod-shape like structure in the range of length 600–800 nm and diameter 5.33–19 μm. Characterization results revealed that CF exhibits microporous structure, while bagasse lignin and SCNC display mesoporous structure. In addition, the results proved that SCNC exhibits a percentage removal 71.56% for methylene blue dye in an aqueous solution.


Bagasse Lignin Electro-spinning Carbon fiber Cellulose nanocrystal 



  1. 1.
    Bahl OP, Shen Z, Lavin JG, Ross RA (1998) Manufacture of carbon fibers. In: Donnet JB, Wang TK, Peng JC, Rebouillat S (eds) Carbon fibers, 3rd edn, Revised and Expended. New York; Marcel Dekker, pp 1–94Google Scholar
  2. 2.
    Red C (2006) Aerospace will continue to lead advanced composites market in 2006. Compos Manuf 7:24–33Google Scholar
  3. 3.
    Donnet JB, Bansal RC (1999) Carbon fibers, 2nd edn. Maecel Dekkerr, New York, pp 1–145Google Scholar
  4. 4.
    Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124:227. CrossRefGoogle Scholar
  5. 5.
    Abdelnaeim MY, El-sheriff IY, Attia AA, Fathy NA, El-shahat ME (2016) Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd (II). Int J Min Process 157:80–88. CrossRefGoogle Scholar
  6. 6.
    Shouman MA, Fathy NA, Khedr SA, Amina AA (2013) Comparative biosorption studies of hexavalent chromium ion raw and modified palm branches. Adv Phys Chem. Google Scholar
  7. 7.
    Khalid KA, Ahmad AA, Yong TL-K (2017) Lignin extraction from lignocellulosic biomass using sub-and supercritical fluid technology as precursor for carbon fiber production. J Jpn Inst Energy 96:255–260. CrossRefGoogle Scholar
  8. 8.
    Ma X, Yang H, Yu L, Chen Y, Li Y (2014) Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation. Materials 7:4431–4441. CrossRefGoogle Scholar
  9. 9.
    Mankar SS, Chaudhari AR, Soni I (2012) Lignin in phenol-formaldehyde adhesives. Int J Knowl Eng 3:116–118Google Scholar
  10. 10.
    Iberahim NI, Jahim JM, Harun S, Nor MTM, Hassan O (2013) Sodium hydroxide pretreatment and enzymatic hydrolysis of oil palm mesocarp fiber. Int J Chem Appl 4(3):101–105. Google Scholar
  11. 11.
    Kumar R, Wyman CE (2009) Effects of cellulose and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Bioethanol Prog 25:302–314. Google Scholar
  12. 12.
    Verma D, Gope PC, Maheshwari MK, Sharma RK (2012) Bagasse fiber composites—a review. J Mater Environ Sci 3:1079–1092Google Scholar
  13. 13.
    Kubo S, Kadla JF (2005) Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 13:97–105. CrossRefGoogle Scholar
  14. 14.
    Sharifabad VP, Mohanty AK, Manjusri M (2015) ELectrospinning of aqueous lignin/poly (ethylene oxide) complexes. Appl Polym 41260:1–9. Google Scholar
  15. 15.
    Xu G, Ren S, Wang D, Sun L, Fang G (2013) Fabrication and properties of alkaline lignin/polyvinyl alcohol Blend membranes. BioResources 8(2):2510–2520Google Scholar
  16. 16.
    Sharifabad VP, Mohanty AK, Manjusri M (2016) Statistical analysis of the effects of carbonization parameters on the structure of carbonized electrospun organosolv lignin fibers. Appl Polym 44005:1–17. Google Scholar
  17. 17.
    Frank E, Hermanutz F, Buchmeiser MR (2012) New trends in high-performance fibers and fiber technology. Macromol Mater Eng 297:493CrossRefGoogle Scholar
  18. 18.
    Brito BS, Pereira FV, Putaux JL, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19:1527–1536. CrossRefGoogle Scholar
  19. 19.
    Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626. CrossRefGoogle Scholar
  20. 20.
    Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. CrossRefGoogle Scholar
  21. 21.
    Wu M, Wang Q, Li K, Wu Y, Liu H (2012) Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degrad Stab 97:1511–1519. CrossRefGoogle Scholar
  22. 22.
    Muhammad AR, Aniva RD, Lucky R, Lukmanul HZ, Euis H (2014) Isolation and characterization of lignin from alkaline pretreatment black liquor of oil palm empty fruit bunch and sugarcane bagasse. MEV J 9:12345Google Scholar
  23. 23.
    Sukri SS, Rahman RA, Illias RM, Yaakob H (2014) Optimization of alkaline pretreatment conditions of oil palm fronds in improving the lignocelluloses contents for reducing sugar production. Rom Biotechnol Lett 19:9006–9018Google Scholar
  24. 24.
    Zhao X, Dai L, Liu D (2009) Characterization and comparison of acetosolv and milox lignin isolated from crofton weed stem. J Appl Polym Sci 114:1295–1302. CrossRefGoogle Scholar
  25. 25.
    Khalil HA, Yusra A, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crop Prod 31:113–121. CrossRefGoogle Scholar
  26. 26.
    Lamaming J, Hashim R, Sulaiman O, Nordin NA (2015) Cellulose nanocrystals isolated from oil trunk carbohydrate polymer. Carbohydr Polym 127:202–208. CrossRefGoogle Scholar
  27. 27.
    Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization”. Carbohydr Polym 86:1291–1299. CrossRefGoogle Scholar
  28. 28.
    Li W, Wu Q, Zhao X, Huang Z, Cao J, Lia J, Liu S (2014) Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr Polym 113:403–410. CrossRefGoogle Scholar
  29. 29.
    Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613. CrossRefGoogle Scholar
  30. 30.
    Yu LL, Cao JZ, Paul C, Tang ZZ (2010) Comparison of copper leaching from alkaline copper quat type-D treated Chinese fir and mongolinan scots pine after different post treatments. Wood Fibers Sci 42:444–449Google Scholar
  31. 31.
    Khatua C, Chinya I, Saha D, Das S, Sen R, Dhara A (2015) Modified clad optical fiber coated with PVA/TIO2 nano composite for humidity sensing application. Int J Smart Sens Intell Syst 8:1424–1442. Google Scholar
  32. 32.
    Cho M, Karaaslan MA, Renneckar S, Ko F (2017) Enhancement of the mechanical properties of electrospun lignin-based nanofibers by heat treatment. J Mater Sci 52:9602–9614. CrossRefGoogle Scholar
  33. 33.
    Aslanzadeh S, Ahvazi B, Boluk Y, Ayranci C (2017) Carbon fiber production from electrospun sulfur free softwood lignin precursors. J Eng Fibers Fabr 12:33–43Google Scholar
  34. 34.
    Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8. Google Scholar
  35. 35.
    Kim D, Cheon J, Kim J, Hwang D, Hong I, Kwon OH, Park WH, Cho D (2017) Extraction and characterization of lignin from black liquor and preparation of biomass-based activated carbon there-form. Carbon Lett 22:81–88. Google Scholar
  36. 36.
    Gonugunta P, Vivekanandhan S, Mohanty AK, Misra M (2012) A study on synthesis and characterization of biobased carbon nanoparticles from lignin. World J Nanosci Eng 2:148–153. CrossRefGoogle Scholar
  37. 37.
    Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738. CrossRefGoogle Scholar
  38. 38.
    Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: equilibrium, kinetics and thermodynamics. Ind Eng Chem Res 53:1108–1118. CrossRefGoogle Scholar
  39. 39.
    Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membrane with cellulose nanocrystal as functionality in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. CrossRefGoogle Scholar
  40. 40.
    Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. CrossRefGoogle Scholar
  41. 41.
    Watkins D, Nuruddin MD, Hosur M, Tcherbi-Narteh A, Jeelani S (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32. CrossRefGoogle Scholar
  42. 42.
    Saha K, Dasgupta J, Chakraborty S, Antunes FA, Sikder J, Curcio S, Santos JC, Arafat HA, Silva SS (2017) Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24:3191–3207. CrossRefGoogle Scholar
  43. 43.
    Khan TA, Gupta A, Shima S, Kumar A (2013) Synthesis and characterization of CF and their application in wood composites. BioResources 8:4171–4184. CrossRefGoogle Scholar
  44. 44.
    Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. CrossRefGoogle Scholar
  45. 45.
    Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fiber. BioResources 8:1893–1908. CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  • Amina Abdel Meguid Attia
    • 1
    Email author
  • Maged Shafik Antonious
    • 3
  • Mona Abdel Hamid Shouman
    • 1
  • Ahmed Ali Ahmed Nada
    • 2
  • Khadiga Mohamed Abas
    • 1
  1. 1.Laboratory of Surface Chemistry and CatalysisNational Research CenterGizaEgypt
  2. 2.Pretreatment and Finishing of Cellulose Based Textiles DepartmentNational Research CenterGizaEgypt
  3. 3.Department of Chemistry, Faculty of ScienceAin-Shams UniversityCairoEgypt

Personalised recommendations