One- and two-dimensional carbon nanomaterials as adsorbents of cationic and anionic dyes from aqueous solutions

  • E. E. Pérez-Ramírez
  • M. de la Luz-Asunción
  • A. L. Martínez-Hernández
  • G. de la Rosa-Álvarez
  • S. Fernández-Tavizón
  • P. Salas
  • C. Velasco-SantosEmail author
Original Article


One- and two-dimensional carbon nanomaterials were tested as adsorbents for the elimination of two anionic dyes, reactive red 2 and methyl orange, and the cationic dye methylene blue from aqueous solutions under the same conditions. Carbon nanomaterials performed well in the removal of dyes. Surface oxygenated groups in the nanomaterials improved the cationic dyes’ adsorption, but not the adsorption of the anionic dye. The interactions between nanomaterials and dyes were verified by infrared and Raman spectroscopy. The pseudo-second order kinetic model was better fitted to the kinetic experimental data than the Elovich and pseudo-first order models. The equilibrium adsorption data were best fitted by the Langmuir model. The dimensions and morphology of the carbon nanomaterials play an important role in the adsorption of the three dyes. The main mechanism of adsorption of anionic dyes is by the interactions of the aromatic rings of the dye structures and π delocalized electrons on carbon nanostructures; the adsorption of cationic dye is mainly due to electrostatic interactions.


Adsorption Carbon nanomaterials Dye removal Pseudo second order Langmuir model 



We thank to Dr. Genoveva Hernández Padrón for her assistance in Raman spectroscopy; and Centro de Geociencias-Universidad Nacional Autónoma de México (CG-UNAM), Dr. Arturo Gómez Tuena and Mr. Manuel Albarrán Murillo for their assistance in the graphite milling. Additionally, we acknowledge the partial financial support of the Laboratorio Nacional de Materiales Grafénicos, Consejo Nacional de Ciencia y Tecnología (CONACyT) Project 250848 and the support from Tecnológico Nacional de México, Project IT16B291.

Supplementary material

42823_2019_29_MOESM1_ESM.docx (576 kb)
Supplementary material 1 (DOCX 575 kb)


  1. 1.
    Peng X, Huang D, Odoom-Wubah T, Fu D, Huang J, Qin Q (2014) Adsorption of anionic and cationic dyes on ferromagnetic ordered mesoporous carbon from aqueous solution: Equilibrium, thermodynamic and kinetics. J Colloid Interface Sci 430:272. CrossRefGoogle Scholar
  2. 2.
    Shukla R, Madras G (2014) Facile synthesis of aluminium cobalt oxide for dye adsorption. J Environ Chem Eng 2:2259. CrossRefGoogle Scholar
  3. 3.
    Saikia J, Das G (2014) Framboidal vaterite for selective adsorption of anionic dyes. J Environ Chem Eng 2:1165. CrossRefGoogle Scholar
  4. 4.
    Calvete T, Lim EC, Cardoso NF, Vaghetti JCP, Dias SLP, Pavan FA (2010) Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: kinetic, equilibrium, and thermodynamic studies. J Environ Manag 91:1695. CrossRefGoogle Scholar
  5. 5.
    Gupta VK, Suhas J (2009) Application of low-cost adsorbents for dye removal: a review. J Environ Manag 90:2313. CrossRefGoogle Scholar
  6. 6.
    Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192(3):1122. CrossRefGoogle Scholar
  7. 7.
    Zeng S, Duan S, Tang R, Li L, Liu C, Sun D (2014) Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chem Eng J 258:218. CrossRefGoogle Scholar
  8. 8.
    Ren X, Li J, Tan X, Wang X (2013) Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans 42:5266. CrossRefGoogle Scholar
  9. 9.
    Kim D, Kim YD, Choi KH, Lim DC, Lee KH (2011) Comparison of the toluene adsorption capacities of various carbon nanostructures. Carbon Lett 12(2):81. CrossRefGoogle Scholar
  10. 10.
    Cai N, Larese-Casanova P (2014) Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes. J Colloid Interface Sci 426:152. CrossRefGoogle Scholar
  11. 11.
    Gupta K, Khatri OP (2017) Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J Colloid Interface Sci 501:11. CrossRefGoogle Scholar
  12. 12.
    Wu CH (2007) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93. CrossRefGoogle Scholar
  13. 13.
    Li Y, Du Q, Liu T, Peng X, Wang J, Sun J, Wang Y, Wua S, Wang Z, Xia Y, Xia L (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361. CrossRefGoogle Scholar
  14. 14.
    Kim H, Kang S-O, Park S, Park HS (2015) Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. J Ind Eng Chem 21:1191. CrossRefGoogle Scholar
  15. 15.
    Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270. CrossRefGoogle Scholar
  16. 16.
    Yan H, Tao X, Yang Z, Li K, Yang H, Li A, Cheng R (2014) Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J Hazard Mater 268:191. CrossRefGoogle Scholar
  17. 17.
    Elsagh A, Moradi O, Najafi F, Alizadeh R, Haddadi V (2014) Evaluation of the potential cationic dye removal using adsorption by graphene and carbon nanotubes as adsorbents surfaces. Arab J Chem 10:S2862. CrossRefGoogle Scholar
  18. 18.
    Pérez-Ramírez EE, de la Rosa-Álvarez G, Salas P, Velasco-Santos C, Martínez-Hernández AL (2015) Comparison as effective photocatalyst or adsorbent of carbon materials of one, two, and three dimensions for the removal of reactive red 2 in water. Environ Eng Sci 32:872. CrossRefGoogle Scholar
  19. 19.
    Abbasi S, Noorizadeh H (2017) Adsorption of Nile Blue A from aqueous solution by different nanostructured carbon adsorbents. Carbon Lett 23:30. Google Scholar
  20. 20.
    Navarro-Pardo F, Martínez-Barrera G, Martínez-Hernández AL, Castaño VM, Rivera-Armenta JL, Medellín-Rodríguez F, Velasco-Santos C (2013) Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon. Materials 6:3494. CrossRefGoogle Scholar
  21. 21.
    Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112. CrossRefGoogle Scholar
  22. 22.
    Din ATM, Hameed BH, Ahmad AL (2009) Batch adsorption of phenol onto physiochemical-activated coconut Shell. J Hazard Mater 161:1522. CrossRefGoogle Scholar
  23. 23.
    Youssef AM, Ahmed AI, El-Bana UA (2012) Adsorption of cationic dye (MB) and anionic dye (AG 25) by physically and chemically activated carbons developed from rice husk. Carbon Lett 13(2):61. CrossRefGoogle Scholar
  24. 24.
    Mall ID, Srivastava VC, Argawal NK (2006) Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ashdkinetic study and equilibrium isotherm analyses. Dyes Pigments 69:210. CrossRefGoogle Scholar
  25. 25.
    Almeida EJR, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317. CrossRefGoogle Scholar
  26. 26.
    Zhang P, Wang T, Qian G, Wu D, Frost RL (2014) Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent. J Environ Sci 426:44. Google Scholar
  27. 27.
    Imamura K, Ikeda E, Nagayasu T, Sakiyama T, Nakanishi K (2002) Adsorption behavior of methylene blue and its congeners on a stainless steel surface. J Colloid Interface Sci 245:50. CrossRefGoogle Scholar
  28. 28.
    Luo Y, Heng Y, Dai X, Chen W, Li J (2009) Preparation and photocatalytic ability of highly defective carbon nanotubes. J Solid State Chem 182:2521. CrossRefGoogle Scholar
  29. 29.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833. CrossRefGoogle Scholar
  30. 30.
    Hsu H-C, Shown I, Wei H-Y, Chang Y-C, Du H-Y, Lin Y-G, Tseng C-A, Wang C-H, Chen L-C, Lind Y-C, Chen K-H (2013) Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 5:262. CrossRefGoogle Scholar
  31. 31.
    Hu Y, Song S, Lopez-Valdivieso A (2015) Effects of oxidation on the defect of reduced graphene oxides in graphene preparation. J Colloid Interface Sci 450:68. CrossRefGoogle Scholar
  32. 32.
    Das B, Voggu R, Rout CS, Rao CNR (2008) Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun 41:5155. CrossRefGoogle Scholar
  33. 33.
    Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D (2012) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B Biointerfaces 90:197. CrossRefGoogle Scholar
  34. 34.
    Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445. CrossRefGoogle Scholar
  35. 35.
    Yao Y, He B, Xu F, Chen X (2011) Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem Eng J 170:82. CrossRefGoogle Scholar
  36. 36.
    Kundu S, Chowdhury IH, Naskar MK (2017) Synthesis of hexagonal shaped nanoporous carbon for efficient adsorption of methyl orange dye. J Mol Liq 234:417. CrossRefGoogle Scholar
  37. 37.
    Wang S, Ng CW, Wang W, Li Q, Hao Z (2012) Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chem Eng J 197:34. CrossRefGoogle Scholar
  38. 38.
    Minitha CR, Lalitha M, Jeyachandran YL, Senthilkumar L, Rajendra Kumar RT (2017) Adsorption behaviour of reduced graphene oxide towards cationic and anionic dyes: co-action of electrostatic and ππ interactions. Mater Chem Phys 194:243. CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  • E. E. Pérez-Ramírez
    • 1
    • 2
  • M. de la Luz-Asunción
    • 1
  • A. L. Martínez-Hernández
    • 1
  • G. de la Rosa-Álvarez
    • 2
  • S. Fernández-Tavizón
    • 3
  • P. Salas
    • 4
  • C. Velasco-Santos
    • 1
    Email author
  1. 1.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México/Tecnológico de QuerétaroSantiago de QuerétaroMexico
  2. 2.División de Ciencias Naturales y Exactas, Departamento de Ingeniería QuímicaUniversidad de GuanajuatoGuanajuatoMexico
  3. 3.Laboratorio Nacional de Materiales GrafénicosCentro de Investigación en Química AplicadaSaltilloMexico
  4. 4.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico

Personalised recommendations