Advertisement

Facile synthesis of mesoporous and highly nitrogen/sulfur dual-doped graphene and its ultrahigh discharge capacity in non-aqueous lithium oxygen batteries

  • Seokhoon Jang
  • Jieun Kim
  • Eunbeen Na
  • Mingyu Song
  • Jinkyu Choi
  • KyongHwa Song
  • Sung-Hyeon BaeckEmail author
  • Sang Eun ShimEmail author
Original Article
  • 8 Downloads

Abstract

High-level heteroatom, N and S, dual-doped graphene with an improved mesoporous structure was fabricated via facile in situ carbonization and used as metal-free cathode for non-aqueous lithium oxygen batteries. The prepared cathode delivered an ultrahigh specific capacity of 22,252 mAh/g at a current density of 200 mA/g as well as better cycling reversibility because of the larger and copious mesopores, which can promote the penetration of oxygen, electrons, and lithium ions and the ability to accommodate more discharge products, e.g., Li2O2, in Li–O2 batteries. The material had a high level of heteroatom co-doping in the carbon lattice, which enhanced the electrical conductivity and served as active sites for the oxygen reduction reaction.

Keywords

Lithium oxygen battery Graphene Carbonization Doping Mesoporosity 

Notes

Acknowledgements

This work was supported financially by Hyundai Motor Company, S. Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294.  https://doi.org/10.1038/nature11475 CrossRefGoogle Scholar
  2. 2.
    Kim M, Yoo E, Ahn W, Shim SE (2018) Controlling porosity of porous carbon cathode for lithium oxygen batteries: influence of micro and meso porosity. J Power Sources 389:20.  https://doi.org/10.1016/j.jpowsour.2018.03.080 CrossRefGoogle Scholar
  3. 3.
    Chitturi VR, Ara M, Fawaz W, Ng KYS, Arava LMR (2016) Enhanced lithium–oxygen battery performances with Pt subnanocluster decorated N-doped single-walled carbon nanotube cathodes. ACS Catal 6:7088.  https://doi.org/10.1021/acscatal.6b01016 CrossRefGoogle Scholar
  4. 4.
    He M, Zhang P, Liu L, Liu B, Xu S (2016) Hierarchical porous nitrogen doped three-dimensional graphene as a free-standing cathode for rechargeable lithium–oxygen batteries. Electrochim Acta 191:90.  https://doi.org/10.1016/j.electacta.2016.01.026 CrossRefGoogle Scholar
  5. 5.
    Sun B, Huang X, Chen S, Munroe P, Wang G (2014) Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium–oxygen batteries. Nano Lett 14:3145.  https://doi.org/10.1021/nl500397y CrossRefGoogle Scholar
  6. 6.
    Wang Z, Xu D, Xu J, Zhang L, Zhang X (2012) Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li–O2 batteries. Adv Funct Mater 22:3699.  https://doi.org/10.1002/adfm.201200403 CrossRefGoogle Scholar
  7. 7.
    Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939.  https://doi.org/10.1021/ja907098f CrossRefGoogle Scholar
  8. 8.
    Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M (2014) Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6:6590.  https://doi.org/10.1039/C4NR00348A CrossRefGoogle Scholar
  9. 9.
    Duan X, O’Donnell K, Sun H, Wang Y, Wang S (2015) Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 11:3036.  https://doi.org/10.1002/smll.201403715 CrossRefGoogle Scholar
  10. 10.
    Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950.  https://doi.org/10.1039/C2EE21817H CrossRefGoogle Scholar
  11. 11.
    Nan D, Huang Z, Lv R, Yang L, Wang J, Shen W, Lin Y, Yu X, Ye L, Sun H, Kang F (2014) Towards understanding of the mechanism of stepwise zeolite recrystallization into micro/mesoporous materials. J Mater Chem A 2:16978.  https://doi.org/10.1039/C4TA03681F CrossRefGoogle Scholar
  12. 12.
    Bag S, Mondal B, Das AK, Raj CR (2015) Nitrogen and sulfur dual-doped reduced graphene oxide: synergistic effect of dopants towards oxygen reduction reaction. Electrochim Acta 163:16.  https://doi.org/10.1016/j.electacta.2015.02.130 CrossRefGoogle Scholar
  13. 13.
    Pang Q, Tang J, Huang H, Liang X, Hart C, Tam KC, Nazar LF (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv Mater 27:6021.  https://doi.org/10.1002/adma.201502467 CrossRefGoogle Scholar
  14. 14.
    Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52:7800.  https://doi.org/10.1002/ange.201301114 CrossRefGoogle Scholar
  15. 15.
    Ito Y, Cong W, Fujita T, Tang Z, Chen M (2015) High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew Chem Int Ed 54:2131.  https://doi.org/10.1002/ange.201410050 CrossRefGoogle Scholar
  16. 16.
    Kim J, Kannan AG, Woo H, Jin D, Kim W, Ryu K, Kim D (2015) A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium–oxygen batteries. J Mater Chem A 3:18456.  https://doi.org/10.1039/C5TA05334J CrossRefGoogle Scholar
  17. 17.
    Zhao C, Yu C, Liu S, Yang J, Fan X, Huang H, Qiu J (2015) 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li–O2 batteries. Adv Funct Mater 25:6913.  https://doi.org/10.1002/adfm.201503077 CrossRefGoogle Scholar
  18. 18.
    Wu ZL, Zhang P, Gao MX, Liu CF, Wang W, Leng F, Huang CZ (2013) One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk: natural proteins. J Mater Chem B 1:2868.  https://doi.org/10.1039/C3TB20418A CrossRefGoogle Scholar
  19. 19.
    Zhou X, Wan L, Guo Y (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152.  https://doi.org/10.1002/adma.201300071 CrossRefGoogle Scholar
  20. 20.
    Du Q, Zheng M, Zhang L, Wang Y, Chen J, Xue L, Dai W, Ji G, Cao J (2010) Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 55:3897.  https://doi.org/10.1016/j.electacta.2010.01.089 CrossRefGoogle Scholar
  21. 21.
    Zhang C, Mahmood N, Yin H, Liu F, Hou Y (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25:4932.  https://doi.org/10.1002/adma.201301870 CrossRefGoogle Scholar
  22. 22.
    Liu X, Zhou L, Zhao Y, Bian L, Feng X, Pu Q (2013) Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor. ACS Appl Mater Interfaces 5:10280.  https://doi.org/10.1021/am403175q CrossRefGoogle Scholar
  23. 23.
    Kapteijn F, Moulijn A, Matzner S, Boehm HP (1999) The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 37:1143.  https://doi.org/10.1016/S0008-6223(98)00312-1 CrossRefGoogle Scholar
  24. 24.
    Liu G, Li X, Ganesan P, Popov BN (2009) Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B 93:156.  https://doi.org/10.1016/j.apcatb.2009.09.025 CrossRefGoogle Scholar
  25. 25.
    Chen Z, Higgins D, Chen Z (2010) Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48:3057.  https://doi.org/10.1016/j.carbon.2010.04.038 CrossRefGoogle Scholar
  26. 26.
    Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911.  https://doi.org/10.1039/C2JM00166G CrossRefGoogle Scholar
  27. 27.
    Hu C, Xiao Y, Zhao Y, Chen N, Zhang Z, Cao M, Qu L (2013) Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale 5:2726.  https://doi.org/10.1039/C3NR34002C CrossRefGoogle Scholar
  28. 28.
    Yang SH, Shin WH, Kang JK (2008) The nature of graphite- and pyridine like nitrogen configurations in carbon nitride nanotubes: dependence on diameter and helicity. Small 4:437.  https://doi.org/10.1002/smll.200700543 CrossRefGoogle Scholar
  29. 29.
    Stancyzk K, Dziembaj R, Piwowarska Z, Witkowski S (1995) Transformation of nitrogen structures in carbonization of model compounds determined by XPS. Carbon 33:1383.  https://doi.org/10.1016/0008-6223(95)00084-Q CrossRefGoogle Scholar
  30. 30.
    Razmjooei F, Singh KP, Song MY, Yu J (2014) Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: a comprehensive study. Carbon 78:257.  https://doi.org/10.1016/j.carbon.2014.07.002 CrossRefGoogle Scholar
  31. 31.
    Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205.  https://doi.org/10.1021/nn203393d CrossRefGoogle Scholar
  32. 32.
    Yang S, Zhi L, Tang K, Feng X, Maier J, Mullen K (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22:3634.  https://doi.org/10.1002/adfm.201200186 CrossRefGoogle Scholar
  33. 33.
    Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed 51:11496.  https://doi.org/10.1002/ange.201206720 CrossRefGoogle Scholar
  34. 34.
    Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE (2016) Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon 99:607.  https://doi.org/10.1016/j.carbon.2015.12.068 CrossRefGoogle Scholar
  35. 35.
    Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491.  https://doi.org/10.1039/C0JM00782J CrossRefGoogle Scholar
  36. 36.
    Yu J, Yu JC, Leung MKP, Ho W, Cheng B, Zhao X, Zhao J (2003) Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J Catal 217:69.  https://doi.org/10.1016/S0021-9517(03)00034-4 Google Scholar
  37. 37.
    Cai D, Wang S, Lian P, Zhu X, Li D, Yang W, Wang H (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim Acta 90:492.  https://doi.org/10.1016/j.electacta.2012.11.105 CrossRefGoogle Scholar
  38. 38.
    Shui J, Shui J, Lin Y, Connell JW, Xu J, Fan X, Dai L (2016) Nitrogen-doped holey graphene for high-performance rechargeable Li–O2 batteries. ACS Energy Lett 1:260.  https://doi.org/10.1021/acsenergylett.6b00128 CrossRefGoogle Scholar
  39. 39.
    Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6:9764.  https://doi.org/10.1021/nn303275d CrossRefGoogle Scholar
  40. 40.
    Grande L, Paillard E, Hassoun J, Park J, Lee Y, Sun Y, Passerini S, Scrosati B (2015) The lithium/air battery: still an emerging system or a practical reality? Adv Mater 27:784.  https://doi.org/10.1002/adma.201403064 CrossRefGoogle Scholar
  41. 41.
    Xie J, Yao X, Cheng Q, Madden IP, Dornath P, Chang C, Fan W, Wang D (2015) Three dimensionally ordered mesoporous carbon as a stable, high-performance Li–O2 battery cathode. Angew Chem 127:4299.  https://doi.org/10.1002/anie.201410786 CrossRefGoogle Scholar
  42. 42.
    Kim M, Lee G, Lee S, Jeong JH, Mhamane D, Roh KC, Kim K (2017) Synthesis of LiFePO4/graphene microspheres while avoiding restacking of graphene sheets for high-rate lithium-ion batteries. J Ind Eng Chem 52:251.  https://doi.org/10.1016/j.jiec.2017.03.054 CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  • Seokhoon Jang
    • 1
  • Jieun Kim
    • 1
  • Eunbeen Na
    • 1
  • Mingyu Song
    • 1
  • Jinkyu Choi
    • 1
  • KyongHwa Song
    • 2
  • Sung-Hyeon Baeck
    • 1
    Email author
  • Sang Eun Shim
    • 1
    Email author
  1. 1.Department of Chemistry and Chemical EngineeringInha UniversityIncheonRepublic of Korea
  2. 2.Research and Development DivisionHyundai Motor CompanyUiwang-siRepublic of Korea

Personalised recommendations