Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity

  • Sohyun Park
  • Min Sung Choi
  • Ho Seok ParkEmail author
Original Article


In this paper, nitrogen (N)-doped ultra-porous carbon derived from lignin is synthesized through hydrothermal carbonization, KOH activation, and post-doping process for CO2 adsorption. The specific surface areas of obtained N-doped porous carbons range from 247 to 3064 m2/g due to a successful KOH activation. N-containing groups of 0.62–1.17 wt% including pyridinic N, pyridone N, pyridine-N-oxide are found on the surface of porous carbon. N-doped porous carbon achieves the maximum CO2 adsorption capacity of 13.6 mmol/g at 25 °C up to 10 atm and high stability over 10 adsorption/desorption cycles. As confirmed by enthalpy calculation with the Clausius–Clapeyron equation, an adsorption heat of N-doped porous carbon is higher than non-doped porous carbon, indicating a role of N functionalities for enhanced CO2 adsorption capability. The overall results suggest that this carbon has high CO2 capture capacity and can be easily regenerated and reused without any clear loss of CO2 adsorption capacity.


Porous carbon Microporous Biomass Lignin Chemical activation Nitrogen doping CO2 capture 



This research was supported by both the National Research Foundation (NRF) funded by the Ministry of Science, ICT, and Future Planning (No. 2017M2A2A6A01021187), and the Energy Technology Development Project (ETDP) funded by the Ministry of Trade, Industry, and Energy (20172410100150), Republic of Korea.

Supplementary material

42823_2019_25_MOESM1_ESM.docx (745 kb)
Supplementary material 1 (DOCX 744 kb)


  1. 1.
    Hao GP, Li WC, Qian D, Lu AH (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853CrossRefGoogle Scholar
  2. 2.
    Rahman FA, Aziz MMA, Saidur R, Bakar WAWA, Hainin MR, Putrajaya R, Hassan NA (2017) Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew Sustain Energy Rev 71:112CrossRefGoogle Scholar
  3. 3.
    Seema H, Kemp KC, Le NH, Park S-W, Chandra V, Lee JW, Kim KS (2014) Highly selective CO2 capture by S-doped microporous carbon materials. Carbon 66:320CrossRefGoogle Scholar
  4. 4.
    Zhuo H, Hu Y, Tong X, Zhong L, Peng X, Sun R (2016) Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind Crops Prod 87:229CrossRefGoogle Scholar
  5. 5.
    Chen C, Park D-W, Ahn W-S (2014) CO2 capture using zeolite 13X prepared from bentonite. Appl Surf Sci 292:63CrossRefGoogle Scholar
  6. 6.
    Verdegaal WM, Wang K, Sculley JP, Wriedt M, Zhou H-C (2016) Evaluation of metal-organic frameworks and porous polymer networks for CO2-capture applications. Chemsuschem 9:636CrossRefGoogle Scholar
  7. 7.
    Zhu X, Do-Thanh C-L, Murdock CR, Nelson KM, Tian C, Brown S, Mahurin SM, Jenkins DM, Hu J, Zhao B, Liu H, Dai S (2013) Efficient CO2capture by a 3D porous polymer derived from Tröger’s base. ACS Macro Lett 2:660CrossRefGoogle Scholar
  8. 8.
    Chen J, Yang J, Hu G, Hu X, Li Z, Shen S, Radosz M, Fan M (2016) Enhanced CO2 capture cof nitrogen-doped biomass-derived porous carbons. ACS Sustain Chem Eng 4:1439CrossRefGoogle Scholar
  9. 9.
    Plaza MG, González AS, Pis JJ, Rubiera F, Pevida C (2014) Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Appl Energy 114:551CrossRefGoogle Scholar
  10. 10.
    Sethia G, Sayari A (2015) Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 captur. Carbon 93:68CrossRefGoogle Scholar
  11. 11.
    Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323CrossRefGoogle Scholar
  12. 12.
    Saha D, Van Bramer SE, Orkoulas G, Ho H-C, Chen J, Henley DK (2017) CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons. Carbon 121:257CrossRefGoogle Scholar
  13. 13.
    Sevilla M, Parra JB, Fuertes AB (2013) Assessment of the role of micropore sand N-doping in CO2 capture by porous carbons. ACS Appl Mater Interfaces 5:6360CrossRefGoogle Scholar
  14. 14.
    González AS, Plaza MG, Rubiera F, Pevida C (2013) Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem Eng J 230:456CrossRefGoogle Scholar
  15. 15.
    Huang Y-F, Chiueh P-T, Shih C-H, Lo S-L, Sun L, Zhong Y, Qiu C (2015) Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75CrossRefGoogle Scholar
  16. 16.
    Ello AS, de Souza LKC, Trokourey A, Jaroniec M (2013) Coconut shell-based microporous carbons for CO2 capture. Microporous Mesoporous Mater 180:280CrossRefGoogle Scholar
  17. 17.
    Hao W, Björkman E, Lilliestråle M, Hedin N (2013) Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Energy 112:526CrossRefGoogle Scholar
  18. 18.
    Bae J-S, Su S (2013) Macadamia nut shell-derived carbon composites for post combustion CO2 capture. Int J Greenh Gas Control 19:174CrossRefGoogle Scholar
  19. 19.
    Zhu B, Shang C, Guo Z (2016) Naturally nitrogen and calcium-doped nanoporous carbon from pine cone with superior CO2 capture capacities. ACS Sustain Chem Eng 4:1050CrossRefGoogle Scholar
  20. 20.
    Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126CrossRefGoogle Scholar
  21. 21.
    Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160CrossRefGoogle Scholar
  22. 22.
    Lucian M, Fiori L (2017) Hydrothermal carbonization of waste biomass: process design, modeling, energy and cost analysis. Energies 10:211CrossRefGoogle Scholar
  23. 23.
    Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710CrossRefGoogle Scholar
  24. 24.
    Sun F, Gao J, Liu X, Pi X, Yang Y, Wu S (2016) Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Appl Surf Sci 387:857CrossRefGoogle Scholar
  25. 25.
    Yu H, Roller JM, Mustain WE, Maric R (2015) Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. J Power Sources 283:84CrossRefGoogle Scholar
  26. 26.
    Etacheri V, Wang C, O’Connell MJ, Chan CK, Pol VG (2015) Porous carbon sphere anodes for enhanced lithium-ion storage. J Mater Chem A 3:9861CrossRefGoogle Scholar
  27. 27.
    Choi MS, Park S, Lee H, Park HS (2018) Hierarchically nanoporous carbons derived from empty fruit bunches for high performance supercapacitors. Carbon Lett 25:103Google Scholar
  28. 28.
    Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102CrossRefGoogle Scholar
  29. 29.
    Ma X, Cao M, Hu C (2013) Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J Mater Chem A 1:913CrossRefGoogle Scholar
  30. 30.
    Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165CrossRefGoogle Scholar
  31. 31.
    Wu Z-S, Parvez K, Winter A, Vieker H, Liu X, Han S, Turchanin A, Feng X, Müllen K (2014) Layer-by-Layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv Mater 26:4552CrossRefGoogle Scholar
  32. 32.
    Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12:1806CrossRefGoogle Scholar
  33. 33.
    Lim G, Lee KB, Ham HC (2016) Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: a density functional theory approach. J Phys Chem C 120:8087CrossRefGoogle Scholar
  34. 34.
    Chen C, Ahn W-S (2011) CO2 capture using mesoporous alumina prepared by a sol–gel process. Chem Eng J 166:646CrossRefGoogle Scholar
  35. 35.
    Zhang S, Li Z, Ueno K, Tatara R, Dokko K, Watanabe M (2015) One-step, template-free synthesis of highly porous nitrogen/sulfur-codoped carbons from a single protic salt and their application to CO2 capture. J Mater Chem A 3:17849CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering, College of EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations