Preparation of Mo2C–carbon nanomaterials for hydrogen evolution reaction

  • Sathish ReddyEmail author
  • Li Song
  • Lixing Kang
  • Quinliang Feng
  • Ran Du
  • Jin Zhang
  • Liumin He
  • Ramakrishna Seeram
Original Article


Highly active, stable and low-cost noble metal-free electrocatalysts are essential for production of hydrogen. However, preparation of such catalysts is still highly challenging so far. In this work, the Mo2C–carbon nanomaterials have been prepared by controlled thermal technique. By controlling concentration of the reactants in the experimental condition, the Mo2C–carbon nanomaterials have been fabricated, which leads to decreases in contact resistance b/w Mo2C–carbon nanomaterials and graphitic carbon atoms. As a result, the Mo2C–carbon nanomaterial electrode shows remarkable activity for hydrogen evolution reactions with a small onset overpotential of 95 mV, a Tafel slope of 62 mV dec−1, an high exchange current density of 0.32 mA cm−2, good stability during long-term 1000 cycles and exhibits long-term durability for several days. This study opens a new method for the preparation of highly active non-noble electrode for production of hydrogen from water splitting.


Molybdenum carbide–carbon nanomaterials Electrocatalyst Hydrogen evolution reaction Electrochemical stability 


  1. 1.
    Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963CrossRefGoogle Scholar
  2. 2.
    Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332CrossRefGoogle Scholar
  3. 3.
    Chen WF, Muckerman JT, Fujita E (2013) Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun 49:8896CrossRefGoogle Scholar
  4. 4.
    Alhajri NS, Anjum Dalaver H, Takanabe K (2014) Molybdenum carbide–carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution. J Mater Chem A 2:10548CrossRefGoogle Scholar
  5. 5.
    Kreater W, Hofmann H (1998) Electrolysis: the important energy transformer in a world of sustainable energy. Int J Hydrogen Energy 23:661CrossRefGoogle Scholar
  6. 6.
    Turner JA (2004) Sustainable hydrogen production. Science 305:972CrossRefGoogle Scholar
  7. 7.
    Lewis NS, Nocera D (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729CrossRefGoogle Scholar
  8. 8.
    Goff AL, Artero V, Jousselme B, Tran PD, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M (2009) From hydrogenases to noble metal—free catalytic nanomaterials for H2 production and uptake. Science 326:1384CrossRefGoogle Scholar
  9. 9.
    Subbaraman R, Tripkovic D, Strmcnik D, Chang K, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM (2011) Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334:1256CrossRefGoogle Scholar
  10. 10.
    Deng J, Ren P, Deng D, Yu L, Yang F, Bao X (2014) Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci 7:1919CrossRefGoogle Scholar
  11. 11.
    Liu Q, Pu Z, Asiri AM, Sun X (2014) Nitrogen-doped carbon nanotube supported iron phosphide nanocomposites for highly active electrocatalysis of the hydrogen evolution reaction. Electrochim Acta 149:324CrossRefGoogle Scholar
  12. 12.
    McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Biacchi AJ, Lewis NS, Schaak RE (2014) Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chem Mater 26:4826CrossRefGoogle Scholar
  13. 13.
    Cui W, Liu Q, Xing Z, Asiri AM, Alamry KA, Sun X (2015) MoP nanosheets supported on biomass-derived carbon flake: one-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Appl Catal B 164:144CrossRefGoogle Scholar
  14. 14.
    Yan Y, Xia BY, Xu Z, Wang X (2014) Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 4:1693CrossRefGoogle Scholar
  15. 15.
    Vrubel H, Hu X (2014) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. J Mater Chem A 2:4852CrossRefGoogle Scholar
  16. 16.
    Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5:4615CrossRefGoogle Scholar
  17. 17.
    Youn DH, Han S, Kim JY, Kim JY, Park H, Choi SH, Lee JS (2014) Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support. ACS Nano 5:5164CrossRefGoogle Scholar
  18. 18.
    Cui W, Cheng N, Liu Q, Ge C, Asiri AM, Sun X (2014) Mo2C Nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal 4:2658CrossRefGoogle Scholar
  19. 19.
    Ge C, Jiang P, Cui W, Pu ZH, Xing Z, Asiri AM, Obaid AY, Sun X, Tian J (2014) Shape-controllable synthesis of Mo2C nanostructures as hydrogen evolution reaction electrocatalysts with high activity. Electrochim Acta 134:182CrossRefGoogle Scholar
  20. 20.
    Wan C, Regmi YN, Leonard BM (2014) Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed 53:6407CrossRefGoogle Scholar
  21. 21.
    Yan H, Xie Y, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H (2018) Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Adv Mater 30:1704156CrossRefGoogle Scholar
  22. 22.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JGG (2005) Trends in the chemical properties of early transition metal carbide surfaces: a density functional study. Catal Today 105:66CrossRefGoogle Scholar
  23. 23.
    Chen JG (1966) Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev 96:1477CrossRefGoogle Scholar
  24. 24.
    Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon MD, Hu X, Tang Y, Liu B, Girault HH (2014) A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ Sci 7:387CrossRefGoogle Scholar
  25. 25.
    Chen WF, Wang CH, Sasaki K, Marinkovic N, Xu W, Muckerman JT, Zhu Y, Adzic RR (2013) Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ Sci 6:943CrossRefGoogle Scholar
  26. 26.
    Vesborg PCK, Seger B, Chorkendorff IB (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951CrossRefGoogle Scholar
  27. 27.
    Pan LF, Li YH, Yang S, Liu PF, Yu MQ, Yang HG (2014) Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction. Chem Commun 50:13135CrossRefGoogle Scholar
  28. 28.
    Guo J, Wang J, Wu Z, Lei W, Zhu J, Xia K, Wang D (2017) Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. J Mater Chem A 5:4879CrossRefGoogle Scholar
  29. 29.
    Zou J, Xiang M, Hou B, Wu D, Sun Y (2011) Single-step thermal carburization synthesis of supported molybdenum carbides from molybdenum-containing methyl-silica. J Nat Gas Chem 20:271CrossRefGoogle Scholar
  30. 30.
    Światowska-Mrowiecka J, de Diesbach S, Maurice V, Zanna S, Klei L, Briand E, Vickridge I, Marcus P (2008) Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J Phys Chem C 112:11050CrossRefGoogle Scholar
  31. 31.
    Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs. Carbon 43:153CrossRefGoogle Scholar
  32. 32.
    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for hydrogen evolution reaction. J Am Chem Soc 133:7296CrossRefGoogle Scholar
  33. 33.
    Thomas J (1961) Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Trans Faraday Soc 57:1603CrossRefGoogle Scholar
  34. 34.
    Conway BE, Tilak BV (2002) Intrafacial processes involving electrocatalytic evolution and oxidation of H2 and the role of chemisorbed H. Electrochim Acta 47:3571CrossRefGoogle Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  • Sathish Reddy
    • 1
    • 2
    Email author
  • Li Song
    • 1
  • Lixing Kang
    • 2
  • Quinliang Feng
    • 2
  • Ran Du
    • 2
  • Jin Zhang
    • 2
  • Liumin He
    • 3
  • Ramakrishna Seeram
    • 1
    • 4
  1. 1.Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR)Jinan UniversityGuangzhouChina
  2. 2.Center for Nanochemistry, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  3. 3.Department of Biomedical Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
  4. 4.Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations