Advertisement

Carbon Letters

, Volume 29, Issue 1, pp 21–30 | Cite as

Preparation and characterization of RGO-incorporated hypercross-linked polymers for CO2 capture

  • Rajangam Vinodh
  • Cadiam Mohan Babu
  • Aziz Abidov
  • Muthiahpillai Palanichamy
  • Wang Seog Cha
  • Hyun Tae JangEmail author
Original Article
  • 3 Downloads

Abstract

The growing demand for nano-structured composite materials and sustainable processes for next generation CO2 capture technologies has necessitated the need to develop novel and cost-effective synthetic routes for solid CO2 adsorbents based on hypercross-linked polymers (HCPs) and reduced graphene oxide (RGO) microporous sorbent materials with improved physico-chemical properties. The most important selection is modification of the synthesized microporous sorbent materials by the incorporation of RGO, giving rise to composite materials that combine the properties of both. These hybrid materials will be of great potential for carbon capture and storage (CCS) applications, especially for post-combustion CO2 capture, owing to the increase in CO2 capturing efficiency and selectivity to CO2 compared to other flue gases. Herein, we report a facile and effective approach for fabrication of HCPs-supported reduced graphene oxide composites. The microporous HCPs was synthesized using 4,4′-bis(chloromethyl)-1,1′-biphenyl monomer by Friedel–Crafts alkylation. The RGO was prepared by modified Hammers method. The as-synthesized composites were characterized by TEM, SEM, FTIR, TGA and N2 adsorption–desorption isotherm. The HCP/RGO composite showed maximum CO2 adsorption of 5.1 wt% than the HCPs alone at 40 °C and 1 atm.

Keywords

Global warming Hypercross-linked polymers RGO Adsorption Composite 

Notes

Acknowledgements

The authors of this paper are gratefully acknowledged the supports from Korea CCS R&D Centre, funded by the Ministry of Education, Science and Technology of the Korean Government and Hanseo University, Seosan, South Korea.

Compliance with ethical standards

Conflict of interest

No potential conflict of interest relevant to this article was reported.

References

  1. 1.
    Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647.  https://doi.org/10.1126/science.1172246 Google Scholar
  2. 2.
    D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058.  https://doi.org/10.1002/anie.201000431 Google Scholar
  3. 3.
    Wang W, Zhou M, Yuan D (2017) Carbon dioxide capture in amorphous porous organic polymers. J Mater Chem A 5:1334.  https://doi.org/10.1039/C6TA09234A Google Scholar
  4. 4.
    Ziyan J, Jiannan P, Daqiang Y (2017) High gas uptake and selectivity in hyper-crosslinked porous polymers knitted by various nitrogen-containing linkers. Chem Open 6:554.  https://doi.org/10.1002/open.201700073 Google Scholar
  5. 5.
    Sanz-Perez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840.  https://doi.org/10.1021/acs.chemrev.6b00173 Google Scholar
  6. 6.
    Wu ZK, Huang ZL, Zhang Y, Qin YH, Ma JY, Luo YB (2016) Kinetic analysis and regeneration performance of 1-butyl-3-methylimidazolium glycinate solutions for CO2 capture. Chem Eng J 295:64.  https://doi.org/10.1016/j.cej.2016.03.030 Google Scholar
  7. 7.
    Wang TL, Jens KJ (2015) Towards an understanding of the oxidative degradation pathways of AMP for post-combustion CO2 capture. Int J Greenhouse Gas Control 37:354.  https://doi.org/10.1016/j.ijggc.2015.03.017 Google Scholar
  8. 8.
    Luo C, Zheng Y, Guo J, Feng B (2014) Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle. Fuel 127:124.  https://doi.org/10.1016/j.fuel.2013.09.063 Google Scholar
  9. 9.
    Vinodh R, Aziz A, Palanichamy M, Cha WS, Jang HT (2017) Effect of Zr and Li on high temperature CO2 sorption characteristics of CaO. Adsorption 23:1033.  https://doi.org/10.1007/s10450-017-9915-0 Google Scholar
  10. 10.
    Li CF, Li PX, Chen LJ, Briggs ME, Liu M, Chen K, Shi XX, Han DM, Ren SB (2017) Pyrene-cored covalent organic polymers by thiophene-based isomers, their gas adsorption, and photophysical properties. J Polym Sci Part A Polym Chem 55:2383.  https://doi.org/10.1002/pola.28627 Google Scholar
  11. 11.
    Chanda DK, Samanta A, Dey A, Das PS, Mukhopadhyay AK (2017) Nanoflower, nanoplatelet and nanocapsule Mg(OH)2 powders for adsorption of CO2 gas. J Mater Sci 52:4910.  https://doi.org/10.1007/s10853-016-0728-4 Google Scholar
  12. 12.
    Wu DC, Xu F, Sun B, Fu R, He HK, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112:3959.  https://doi.org/10.1021/cr200440z Google Scholar
  13. 13.
    Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548.  https://doi.org/10.1039/C2CS35072F Google Scholar
  14. 14.
    Dawson R, Stockel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4:4239.  https://doi.org/10.1039/C1EE01971F Google Scholar
  15. 15.
    Vinodh R, Aziz A, Peng MM, Babu CM, Palanichamy M, Cha WS, Jang HT (2015) Synthesis and characterization of semiconducting porous carbon for energy applications and CO2 adsorption. J Ind Eng Chem 32:273.  https://doi.org/10.1016/j.jiec.2015.09.002 Google Scholar
  16. 16.
    Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI (2010) High surface area conjugated microporous polymers: the importance of reaction solvent choice. Macromolecules 43:8524.  https://doi.org/10.1021/ma101541h Google Scholar
  17. 17.
    Lindemann P, Tsotsalas M, Shishatskiy S, Abetz V, Sidenstein PK, Azucena C, Monnereau L, Beyer A, Golzh€auser A, Mugnaini V, Gliemann H, Brase S, Woll C (2014) Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation. Chem Mater 26:7189.  https://doi.org/10.1021/cm503924h Google Scholar
  18. 18.
    Zhu X, Mahurin SM, An SH, Thanh CLD, Tian C, Li Y, Gill LW, Hagaman EW, Bian Z, Zhou J, Hu J, Liu H, Dai S (2014) Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chem Commun 50:7933.  https://doi.org/10.1039/C4CC01588F Google Scholar
  19. 19.
    Saleh M, Lee HM, Kemp KC, Kim KS (2014) Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Appl Mater Interfaces 6:7325.  https://doi.org/10.1021/am500728q Google Scholar
  20. 20.
    Vinodh R, Aziz A, Peng MM, Babu CM, Palanichamy M, Cha WS, Jang HT (2015) A new strategy to synthesize hypercross-linked conjugated polystyrene and its application towards CO2 sorption. Fibers Polym 16:1458.  https://doi.org/10.1007/s12221-015-5151-y Google Scholar
  21. 21.
    Vinodh R, Ganesh M, Peng MM, Aziz A, Palanichamy M, Cha WS, Jang HT (2015) Microporous hypercross-linked conjugated quinonoid chromophores of anthracene: novel polymers for CO2 adsorption. Chin J Polym Sci 33:224.  https://doi.org/10.1007/s10118-015-1573-7 Google Scholar
  22. 22.
    Song Q, Cao S, Pritchard RH, Ghalei B, Al-Muhtaseb SA, Terentjev EM, Cheetham AK, Sivaniah E (2014) Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat Commun 5:4813.  https://doi.org/10.1038/ncomms5813 Google Scholar
  23. 23.
    Patel HA, Yavuz CT (2012) Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem Commun 48:9989.  https://doi.org/10.1039/C2CC35392J Google Scholar
  24. 24.
    Patel HA, Karadas F, Canlier A, Park J, Deniz E, Jung Y, Atilhan M, Yavuz CT (2012) High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. J Mater Chem 22:8431.  https://doi.org/10.1039/C2JM30761H Google Scholar
  25. 25.
    Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875.  https://doi.org/10.1021/ja9015765 Google Scholar
  26. 26.
    Hu L, Ni H, Chen X, Wang L, Wei Y, Jiang T, Lu Y, Lu X, Ye P (2016) Hypercrosslinked polymers incorporated with imidazolium salts for enhancing CO2 capture. Polym Eng Sci 56:573.  https://doi.org/10.1002/pen.24282 Google Scholar
  27. 27.
    Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711.  https://doi.org/10.1016/S0079-6700(00)00015-0 Google Scholar
  28. 28.
    Gokmen MT, DuPrez EF (2012) Porous polymer particles—a comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 37:365.  https://doi.org/10.1016/j.progpolymsci.2011.07.006 Google Scholar
  29. 29.
    Duranoglu D, Kaya IG, Beker U, Senkal BF (2012) Synthesis and adsorption properties of polymeric and polymer-based hybrid adsorbent for hexavalent chromium removal. Chem Eng J 181–182:103.  https://doi.org/10.1016/j.cej.2011.11.028 Google Scholar
  30. 30.
    Jianhan H, Li Y, Xiaofei W, Maowen X, You-Nian L, Shuguang D (2013) Phenol adsorption on α,α′-dichloro-p-xylene (DCX) and 4,4′-bis(chloromethyl)-1,1′-biphenyl (BCMBP) modified XAD-4 resins from aqueous solutions. Chem Eng J 222:1.  https://doi.org/10.1016/j.cej.2013.02.044 Google Scholar
  31. 31.
    Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34:471.  https://doi.org/10.1002/marc.201200788 Google Scholar
  32. 32.
    Meng QB, Weber J (2014) Lignin-based microporous materials as selective adsorbents for carbon dioxide separation. Chemsuschem 7:3312.  https://doi.org/10.1002/cssc.201402879 Google Scholar
  33. 33.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282.  https://doi.org/10.1038/nature04969 Google Scholar
  34. 34.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KM, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558.  https://doi.org/10.1016/j.carbon.2007.02.034 Google Scholar
  35. 35.
    Brodie MBC (1860) Note sur un nouveau procede pour la purification et la desagragation du graphite. Ann Chim Phys 45:351Google Scholar
  36. 36.
    Seredych M, Petit C, Tamashausky AV, Bandosz TJ (2009) Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents. Carbon 47:445.  https://doi.org/10.1016/j.carbon.2008.10.020 Google Scholar
  37. 37.
    Bissessur R, Liu PKY, White W, Scully SF (2006) Encapsulation of polyanilines into graphite oxide. Langmuir 22:1729.  https://doi.org/10.1021/la0527339 Google Scholar
  38. 38.
    Matsuo Y, Tabata T (2005) Preparation and characterization of silylated graphite oxide. Carbon 43:2875.  https://doi.org/10.1016/j.carbon.2005.06.006 Google Scholar
  39. 39.
    Morishige K, Hamada T (2005) Iron oxide pillared graphite. Langmuir 21:6277.  https://doi.org/10.1021/la050544k Google Scholar
  40. 40.
    Petit C, Bandosz TJ (2009) Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. J Phys Chem C 113:3800.  https://doi.org/10.1021/jp8097044 Google Scholar
  41. 41.
    Petit C, Bandosz TJ (2009) MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753.  https://doi.org/10.1002/adma.200901581 Google Scholar
  42. 42.
    Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 8:1339.  https://doi.org/10.1021/ja01539a017 Google Scholar
  43. 43.
    Chen Y, Zhang X, Yu P, Ma Y (2009) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun 30:4527.  https://doi.org/10.1039/b907723e Google Scholar
  44. 44.
    Babu CM, Vinodh R, Selvamani R, Prathap Kumar K, Shakila Parveen A, Thirukumaran P, Srinivasan VV, Balasubramaniam R, Ramkumar V (2017) Organic functionalized Fe3O4/RGO nanocomposites for CO2 adsorption. J Environ Chem Eng 5:2440.  https://doi.org/10.1016/j.jece.2017.04.044 Google Scholar

Copyright information

© Korean Carbon Society 2019

Authors and Affiliations

  • Rajangam Vinodh
    • 1
    • 2
    • 3
  • Cadiam Mohan Babu
    • 1
    • 2
  • Aziz Abidov
    • 1
    • 2
  • Muthiahpillai Palanichamy
    • 1
    • 2
  • Wang Seog Cha
    • 2
    • 4
  • Hyun Tae Jang
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringHanseo UniversitySeosanSouth Korea
  2. 2.Korea Carbon Capture and Sequestration R&D CentreSeosan-siSouth Korea
  3. 3.School of Electrical and Computer EngineeringPusan National UniversityBusanSouth Korea
  4. 4.School of Civil and Environmental EngineeringKunsan National UniversityGunsan-siSouth Korea

Personalised recommendations