Advertisement

Detection and molecular characterization of Lymphocystivirus in Brazilian ornamental fish

  • Samara Rita de Lucca MaganhaEmail author
  • Pedro Henrique Magalhães Cardoso
  • Simone de Carvalho Balian
  • Sabrina Ribeiro de Almeida-Queiroz
  • Andrezza Maria Fernandes
  • Ricardo Luiz Moro de Sousa
Bacterial, Fungal and Virus Molecular Biology - Short Communication

Abstract

The aim of this study is to report the occurrence of Lymphocystivirus in Brazilian ornamental fish. From 25 ornamental fish species submitted for molecular diagnosis, only one sample (Pomacanthus imperator) was positive, and its viral nucleotide sequence obtained clustered with sequences of genotype VII. To our knowledge, this is the first report on the genetic characterization of Lymphocystivirus in Brazil.

Keywords

Lymphocystivirus Fish disease Molecular diagnostic 

Notes

Funding information

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, No. 2014/04327-7 and No. 2012/08846-3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed (CEUA n° 6782040416).

References

  1. 1.
    Livengood EJ, Chapman FA (2007) The ornamental fish trade: an introduction with perspectives for responsible aquarium fish ownership. In: FA124 Department of Fisheries and Aquatic Sciences. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, p 1–8. https://edis.ifas.ufl.edu/fa124
  2. 2.
    Ploeg A (2007) The volume of the ornamental fish trade. In: Fossa S, GMO B, Chuan LL, Ploeg A (eds) International Transport Of Live Fish In The Ornamental Aquatic Industry. Ornamental Fish International Educational Publication 2. OFI, Maarssen, pp 48–64Google Scholar
  3. 3.
    Rimmer AE, Becker JA, Tweedie A, Lintermans M, Landos M, Stephens F, Whittington RJ (2015) Detection of dwarf gourami iridovirus (Infectious spleen and kidney necrosis virus) in populations of ornamental fish prior to and after importation into Australia, with the first evidence of infection in domestically farmed platy (Xiphophorus maculatus). Prev Vet Med 2122:181–194CrossRefGoogle Scholar
  4. 4.
    Chinchar VG, Waltzek TB, Subramaniam K (2017) Ranavirus and other members of the family Iridoviridae: their place in the virosphere. Virology 17:30184–30188Google Scholar
  5. 5.
    Cano I, Valverde EJ, Lopez-Jimena B, Alonso MC, Garcia-Rosado E, Sarasquete C, Borrego JJ, Castro D (2010) A new genotype of Lymphocystivirus isolated from cultured gilthead seabream, Sparus aurata L., and Senegalese sole, Solea senegalensis (Kaup). Fish Dis 33:695–700CrossRefGoogle Scholar
  6. 6.
    Alonso MC, Cano I, Garcia-Rosado E, Castro D, Lamas J, Barja JL, Borrego JJ (2005) Isolation of lymphocystis disease virus from sole, Solea senegalensis Kaup, and blackspot sea bream, Pagellus bogaraveo (Brünnich). J Fish Dis 28:221–228CrossRefGoogle Scholar
  7. 7.
    Ciulli S, Pinheiro ACAS, Volpe E, Moscato M, Jung TS, Galeotti M, Stellino S, Farneti R, Prosperi S (2015) Development and application of a real-time PCR assay for the detection and quantitation of lymphocystis disease virus. J Virol Methods 213:164–173CrossRefGoogle Scholar
  8. 8.
    Palmer LJ, Hogan NS, VanDenHeuvel MR (2012) Phylogenetic analysis and molecular methods for the detection of lymphocystis disease virus from yellow perch. Perca flavescens (Mitchell). Fish Dis 35:661–667CrossRefGoogle Scholar
  9. 9.
    Chinchar VG, Hick P, Ince IA, Jancovich JK, Marschang R, Qin Q, Subramaniam K, Waltzek TB, Whittington R, Williams T, Zhang Q, Report Consortium ICTV (2017) ICTV virus taxonomy profile: Iridoviridae. J Gen Virol 98:890–891CrossRefGoogle Scholar
  10. 10.
    Wolf K (1988) Fish viruses and fish viral diseases. Cornell University Press, IthacaGoogle Scholar
  11. 11.
    Colorni A, Diamant A (1995) Splenic and cardiac lymphocystis in the red drum, Scaenops ocellatus (L.). Fish Dis 18:467–471CrossRefGoogle Scholar
  12. 12.
    Cano I, Valverde EJ, Garcia-Rosado E, Alonso MC, Lopez-Jimena B, Ortiz-Delgado JB, Borrego JJ, Sarasquete C, Castro D (2013) Transmission of lymphocystis disease virus to cultured gilthead seabream, Sparus aurata L., larvae. Fish Dis 36:569–576CrossRefGoogle Scholar
  13. 13.
    Anders K. 1989 Lymphocystis disease of fishes. In: Viruses of lower vertebrates (ed. by W. Ahne & D. Kurstak), Springer-Verlag, Berlin; . p. 141–160Google Scholar
  14. 14.
    Hossain M, Song JY, Kitamura SI, Jung SJ, Oh MJ (2008) Phylogenetic analysis of lymphocystis disease virus from tropical ornamental fish species based on a major capsid protein gene. J Fish Dis 31:473–479CrossRefGoogle Scholar
  15. 15.
    Iwamoto R, Hasegawa O, LaPatra S, Yoshimizu M (2008) Isolation and characterization of the Japanese flounder (Paralichthys olivaceus) lymphocystis disease virus. J Aquat Anim Health 14:114–123CrossRefGoogle Scholar
  16. 16.
    Cardoso PHM, Balian SC (2016) Lymphocystis virus in ornamental fish imported in Brazil. J Contin Educ Anim Sci CRMV-SP 14:6–11Google Scholar
  17. 17.
    Tidona CA, Schnitzler P, Kehm R, Darai G (1998) Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution? Virus Genes 16:59–66CrossRefGoogle Scholar
  18. 18.
    Xu L, Feng J, Huang Y (2014) Identification of lymphocystis disease virus from paradise fish Macropodus opercularis (LCDV-PF). Arch Virol 159:2445–2449CrossRefGoogle Scholar
  19. 19.
    Kitamura SI, Jung SJ, Oh MJ (2006) Differentiation of Lymphocystis disease virus genotype by multiplex PCR. J Microbiol 44:248–253PubMedGoogle Scholar
  20. 20.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  21. 21.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. 22.
    Kumar S, Stecher G, Tamura K (2016) MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  23. 23.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589CrossRefGoogle Scholar
  24. 24.
    Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefGoogle Scholar
  25. 25.
    Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:1–4CrossRefGoogle Scholar
  26. 26.
    Cano I, Ferro P, Alonso MC, Bergmann SM, Römer-Oberdörfer A, Garcia-Rosado E, Castro D, Borrego JJ (2007) Development of molecular techniques for detection of lymphocystis disease virus in different marine fish species. J Appl Microbiol 102:32–40CrossRefGoogle Scholar
  27. 27.
    Kvitt H, Heinisch G, Diamant A (2008) Detection and phylogeny of Lymphocystivirus in sea bream Sparus aurata based on the DNA polymerase gene and major capsid protein sequences. Aquaculture 275:58–63CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Samara Rita de Lucca Maganha
    • 1
    Email author
  • Pedro Henrique Magalhães Cardoso
    • 2
  • Simone de Carvalho Balian
    • 2
  • Sabrina Ribeiro de Almeida-Queiroz
    • 1
  • Andrezza Maria Fernandes
    • 1
  • Ricardo Luiz Moro de Sousa
    • 1
  1. 1.Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de AlimentosUniversidade de São PauloPirassunungaBrazil
  2. 2.Faculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSao PauloBrazil

Personalised recommendations