Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains

  • Izat Smekenov
  • Marzhan Bakhtambayeva
  • Kudaybergen Bissenbayev
  • Murat Saparbayev
  • Sabira Taipakova
  • Amangeldy K. BissenbaevEmail author
Biotechnology and Industrial Microbiology - Research Paper


The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily cellobiose, because it is the major soluble by-product of cellulose and acts as a strong inhibitor, especially for cellobiohydrolase, which plays a key role in cellulose hydrolysis. Commonly used ethanologenic yeast Saccharomyces cerevisiae is unable to utilize cellobiose; accordingly, genetic engineering efforts have been made to transfer β-glucosidase genes enabling cellobiose utilization. Nonetheless, laboratory yeast strains have been employed for most of this research, and such strains may be difficult to use in industrial processes because of their generally weaker resistance to stressors and worse fermenting abilities. The purpose of this study was to engineer industrial yeast strains to ferment cellobiose after stable integration of tabgl1 gene that encodes a β-glucosidase from Thermoascus aurantiacus (TaBgl1). The recombinant S. cerevisiae strains obtained in this study secrete TaBgl1, which can hydrolyze cellobiose and produce ethanol. This study clearly indicates that the extent of glycosylation of secreted TaBgl1 depends from the yeast strains used and is greatly influenced by carbon sources (cellobiose or glucose). The recombinant yeast strains showed high osmotolerance and resistance to various concentrations of ethanol and furfural and to high temperatures. Therefore, these yeast strains are suitable for ethanol production processes with saccharified lignocellulose.


Thermoascus aurantiacus Saccharomyces cerevisiae β-Glucosidase Cellobiose Industrial strains Ethanol 


Funding information

This study was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP05131569).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

42770_2019_192_MOESM1_ESM.pdf (456 kb)
ESM 1 (PDF 456 kb)


  1. 1.
    Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116CrossRefGoogle Scholar
  2. 2.
    Jegathese SJP, Farid M (2014) Microalgae as a renewable source of energy: a niche opportunity. Journal of Renewable Energy 2014:10CrossRefGoogle Scholar
  3. 3.
    Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17:fox044PubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang X, Yang J, Yang S, Jiang Y (2019) Unraveling the genetic basis of fast L-arabinose consumption on top of recombinant xylose-fermenting Saccharomyces cerevisiae. Biotechnol Bioeng 116:283–293PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Xiong M, Chen G, Barford J (2011) Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour Technol 102:9206–9215PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ma TY, Lin TH, Hsu TC, Huang CF, Guo GL, Hwang WS (2012) An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 39:1477–1486PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kricka W, Fitzpatrick J, Bond U (2014) Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol 5:174PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH (2010) Cellodextrin transport in yeast for improved biofuel production. Science. 330:84–86PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol 99:5099–5103PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    da Silva RR, da Conceição PJP, de Menezes CLA, de Oliveira Nascimento CE, Machado Bertelli M, Pessoa Júnior A, de Souza GM, da Silva R, Gomes E (2019) Biochemical characteristics and potential application of a novel ethanol and glucose-tolerant β-glucosidase secreted by Pichia guilliermondii G1.2. J Biotechnol 294:73–80PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Brienzo M, Arantes V, Milagres AMF (2008) Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. Fungal Biology Reviews 22:120–130CrossRefGoogle Scholar
  13. 13.
    Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ríos-Fránquez FJ, González-Bautista E, Ponce-Noyola T, Ramos-Valdivia AC, Poggi-Varaldo HM, García-Mena J, Martinez A (2017) Expression of a codon-optimized β-glucosidase from Cellulomonas flavigena PR-22 in Saccharomyces cerevisiae for bioethanol production from cellobiose. Arch Microbiol 199:605–611PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wilde C, Bawa N, Gold ND, Tambor H, Mougharbel L, Storms R, Martin VJJ (2012) Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain. Appl Microbiol Biotechnol 95:647–659PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tang H, Hou J, Shen Y, Xu L, Yang H, Fang X, Bao X (2013) High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. J Microbiol Biotechnol 23:1577–1585PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 36:1085–1091PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hector RE, Dien BS, Cotta MA, Qureshi N (2011) Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol 38:1193–1202PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pajares IG, Elegado FB, Magbanua JPV, Raymundo AK (2009) Selection of high ethanol-producing Saccharomyces cerevisiae strains, their fermentation properties, and genetic differentiation based on rep-PCR and mt rDNA-PCR. Philipp J Sci 138:37–48Google Scholar
  21. 21.
    Deparis Q, Claes A, Foulquie-Moreno MR, Thevelein JM (2017) Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res 17Google Scholar
  22. 22.
    Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology 24:151–159CrossRefGoogle Scholar
  23. 23.
    Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jönsson LJ (2000) Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 559:617–632CrossRefGoogle Scholar
  24. 24.
    Li H, Wu M, Xu L, Hou J, Guo T, Bao X, Shen Y (2015) Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microb Biotechnol 8:266–274PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    De Baetselier A, Vasavada A, Dohet P, Ha-Thi V, De Beukelaer M, Erpicum T, De Clerck L, Hanotier J, Rosenberg S (1991) Fermentation of a yeast producing Aspergillus niger glucose oxidase: scale-up, purification and characterization of the recombinant enzyme. Nat Biotechnol 9:559–561CrossRefGoogle Scholar
  26. 26.
    Ziv N, Siegal ML, Gresham D (2013) Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy. Mol Biol Evol 30:2568–2578PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Favaro L, Basaglia M, Trento A, Van Rensburg E, García-Aparicio M, Van Zyl WH, Casella S (2013) Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnology for Biofuels 6:168PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86:403–417PubMedCrossRefGoogle Scholar
  29. 29.
    Ishchenko AA, Yang XM, Ramotar D, Saparbaev M (2005) The 3′→5′ exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Molecular and Cellular Biology 25:6380–6390PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Taipakova SM, Smekenov IT, Saparbaev MK, Bissenbaev AK (2015) Characterization of Aspergillus niger endo-1,4-β-glucanase ENG1 secreted from Saccharomyces cerevisiae using different expression vectors. Genetics and Molecular Research online journal 14:39Google Scholar
  31. 31.
    Bryksin A, Matsumura I (2013) Overlap extension PCR cloning. Methods Mol Biol 1073:31–42PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 313:107–120PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hong W, Susanne EK, Adrian JC (1996) An improved method for polymerase chain reaction using whole yeast cells. Anal Biochem 237:145–146CrossRefGoogle Scholar
  34. 34.
    Baffi MA, Tobal T, Henrique J, Lago G, Leite RS, Boscolo M, Gomes E, Da-Silva R (2011) A novel β-glucosidase from Sporidiobolus pararoseus: characterization and application in winemaking. J Food Sci 76:997–1002CrossRefGoogle Scholar
  35. 35.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Flaugnatti N, Journet L (2017) Identification of effectors: precipitation of supernatant material. Methods in Molecular Biology 1615:459–464Google Scholar
  37. 37.
    Akishev Z, Taipakova S, Joldybayeva B, Zutterling C, Smekenov I, Ishchenko AA, Zharkov DO, Bissenbaev AK, Saparbaev M (2016) The major Arabidopsis thaliana apurinic/apyrimidinic endonuclease, ARP is involved in the plant nucleotide incision repair pathway. DNA Repair 48:30–42PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Liu X, Zhang X, Bao X (2006) Study on the stress resistance of Saccharomyces cerevisiae industrial strains. China Brewing 1:8–11Google Scholar
  39. 39.
    Gomes I, Gomes J, Gomes DJ, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and beta-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–468PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15:611–618PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Keating JD, Robinson J, Bothast RJ, Saddler JN, Mansfield SD (2004) Characterization of a unique ethanologenic yeast capable of fermenting galactose. Enzym Microb Technol 35:242–253CrossRefGoogle Scholar
  42. 42.
    Wang M, Wang J, Tan JX, Mou JF (2011) Optimization of ethanol fermentation from sweet sorghum juice using response surface methodology. Energy Sources 33:1139–1146CrossRefGoogle Scholar
  43. 43.
    Phutela UG, Kaur J (2014) Process optimization for ethanol production from sweet sorghum juice using Saccharomyces cerevisiae strain NRRL Y-2034 by response surface methodology. Sugar Tech 16:411–421CrossRefGoogle Scholar
  44. 44.
    Yu S, Jeppsson H, Hahn-Hagerdal B (1995) Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains. Appl Microbiol Biotechnol 44:314–320PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Cheng C, Tang RQ, Xiong L, Hector RE, Bai FW, Zhao XQ (2018) Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. Biotechnology for Biofuels 11:28Google Scholar
  46. 46.
    Voth WP, Richards JD, Shaw JM, Stillman DJ (2001) Yeast vectors for integration at the HO locus. Nucleic Acids Res 29:E59PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Njokweni AP, Rose SH, van Zyl WH (2012) Fungal β-glucosidase expression in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 39:1445–1452CrossRefGoogle Scholar
  48. 48.
    Zhang L, Guo Z-p, J-h H, Z-y D, Gao Z-q, He Z-m, G-y S (2012) Expressing β-glucosidase from Saccharomycopsis fibuligera in industrial ethanol producing yeast and evaluation of the expressing sufficiency. Ann Microbiol 62:539–544CrossRefGoogle Scholar
  49. 49.
    Guo Z-p, Zhang L, Z-y D, Z-h G, G-y S (2011) Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Enzym Microb Technol 49:105–112CrossRefGoogle Scholar
  50. 50.
    Gurgu L, Lafraya A, Polaina J, Marin-Navarro J (2011) Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresour Technol 102:5229–5236PubMedCrossRefGoogle Scholar
  51. 51.
    Kruszewska JS, Perlińska-Lenart U, Górka-Nieć W, Orłowski J, Zembek P, Palamarczyk G (2008) Alterations in protein secretion caused by metabolic engineering of glycosylation pathways in fungi. Acta Biochim Pol 55:447–456PubMedCrossRefGoogle Scholar
  52. 52.
    Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30:193–200PubMedGoogle Scholar
  54. 54.
    Olajuyigbe M, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int 1:1–8CrossRefGoogle Scholar
  55. 55.
    Goochee CF, Monica T (1990) Environmental-effects on protein glycosylation. Biotechnology 8:421–427PubMedPubMedCentralGoogle Scholar
  56. 56.
    Andersen DC, Bridges T, Gawlitzek M, Hoy C (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70:25–31PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Yuen CT, Storring PL, Tiplady RJ, Izquierdo M, Wait R, Gee CK, Gerson P, Lloyd P, Cremata JA (2003) Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures. Brit J Haematol 121:511–526CrossRefGoogle Scholar
  58. 58.
    Kim S-Y, Sohn J-H, Pyun Y-R, Choi E-S (2007) Variations in protein glycosylation in Hansenula polymorpha depending on cell culture stage. J. Microbiol. Biotechnol. 17:1949–1954Google Scholar
  59. 59.
    Kukuruzinska MA, Lennon K (1994) Growth-related coordinate regulation of the early N-glycosylation genes in yeast. Glycobiology 4:437–443PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chomvong K, Benjamin DI, Nomura DK, Cate JHD (2017) Cellobiose consumption uncouples extracellular glucose sensing and glucose metabolism in Saccharomyces cerevisiae. mBio 8:e00855–e00817PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Almeida J, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349CrossRefGoogle Scholar
  62. 62.
    Lopes DD, Rosa CA, Hector RE, Dien BS, Mertens JA, Ayub MAZ (2017) Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. J Ind Microbiol Biotechnol 44:1575–1588PubMedCrossRefGoogle Scholar
  63. 63.
    Romanh A, Pereira F, Johansson B, Domingues L (2015) Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Bioresour Technol 179:150–158CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Izat Smekenov
    • 1
    • 2
  • Marzhan Bakhtambayeva
    • 1
    • 2
  • Kudaybergen Bissenbayev
    • 2
    • 3
  • Murat Saparbayev
    • 4
  • Sabira Taipakova
    • 1
    • 2
  • Amangeldy K. Bissenbaev
    • 1
    • 2
    Email author
  1. 1.Department of Molecular Biology and Genetics, Faculty of Biology and BiotechnologyAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Scientific Research Institute of Biology and Biotechnology ProblemsAl-Farabi Kazakh National UniversityAlmatyKazakhstan
  3. 3.Nazarbayev Intellectual SchoolAlmatyKazakhstan
  4. 4.Gustave Roussy Cancer Campus, CNRS UMR8200Université Paris-SudVillejuif CedexFrance

Personalised recommendations