Advertisement

Occurrence, quantification, pulse types, and antimicrobial susceptibility of Salmonella sp. isolated from chicken meat in the state of Paraná, Brazil

  • Ana Paula Perin
  • Bruna Torres Furtado Martins
  • Marco Antônio Bacellar Barreiros
  • Ricardo Seiti Yamatogi
  • Luís Augusto Nero
  • Luciano dos Santos BersotEmail author
Food Microbiology - Research Paper

Abstract

The aim of this work was to verify the occurrence, quantification, pulse types, and antimicrobial susceptibility profiles of Salmonella sp. isolated from chicken meat produced and marketed in the state of Paraná, considered to be the state with the highest production of poultry meat in Brazil. Ninety-five of 300 (31.5%) frozen cuts of chicken were found to contain Salmonella sp., and 98 different isolates of Salmonella sp. were cultured from the positive samples. Quantification showed low Salmonella sp. loading, ranging from 0.12 to 6.4 MPN/g. The antimicrobial resistance test was performed against 16 agents from 6 different classes. All isolates were sensitive to meropenem, imipenem, chloramphenicol, and amikacin. The highest resistance rates were observed for nalidixic acid (95%), tetracycline (94%), doxycycline (94%), ampicillin (87%), amoxicillin with clavulanic acid (84%), ceftriaxone (79%), and ciprofloxacin (76%). A total of 84 (85.7%) of the isolates were identified with a multidrug resistant profile, 13 of which were found to have encoding genes extended-spectrum beta-lactamase (ESBL), especially blaCTX-M-2 e blaTEM-1. The major serovars identified were S. Typhimurium (43%) and S. Heidelberg (39%). The third most isolated serovar was S. Ndolo (6%), without previous reports of its presence in poultry meat in Brazil. Molecular characterization of S. Typhimurium and S. Heidelberg isolates by pulsed field gel electrophoresis (PFGE) showed a clonal relationship between all isolates of the same serovar (genetic similarity greater than 80%). Isolates of S. Typhimurium and S. Heidelberg with 100% similarity were found in up to five different geographic regions of the state, showing the potential for the spread of this pathogen in the Paraná poultry chain. Epidemiological surveys like this are important to understand the dynamics of dissemination and to monitor the prevalence of pathogens in the final products of poultry chains. In addition, to know the resistance profile of strains of Salmonella sp. present in food that contributes to the adoption of faster and more effective therapeutic measures, when necessary.

Keywords

blaCTX-M-2 blaTEM-1 PFGE Sequencing Salmonella Ndolo mMPN 

Notes

Funding information

This study was funded in part by the Coordination of Superior Level Staff Improvement—Brazil (CAPES)—Finance Code 001, National Council for Scientific and Technological Development (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Brazil (2018) Outbreaks of foodborne diseases in Brazil. http://portalarquivos2.saude.gov.br/images/pdf/2018/julho/02/Apresentacao-Surtos-DTA-Junho-2018.pdf. Accessed 18 August 2018
  2. 2.
    Marder EP, Griffin PM, Cieslak PR, Dunn J, Hurd S, Jervis R, Lathrop S, Muse A, Ryan P, Smith K, Tobin-D’angelo M, Vugia DJ, Holt KG, Wolpert BJ, Tauxe R, Geissler AL (2018) Preliminary Incidence and trends of infections with pathogens transmitted commonly through food—foodborne diseases active surveillance network, 10 U.S. sites, 2006–2017. MMWR Morb Mort Wkly Rep 67:324–328.  https://doi.org/10.15585/mmwr.mm6711a3 CrossRefGoogle Scholar
  3. 3.
    EFSA (European Food Safety Authority) (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15:5077.  https://doi.org/10.2903/j.efsa.2017.5077 CrossRefGoogle Scholar
  4. 4.
    Majowicz SE, Musto J, Scallan E, Angulo FJ, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal gastroenteritis. Clin Infect Dis 50:882–889.  https://doi.org/10.1086/650733 CrossRefPubMedGoogle Scholar
  5. 5.
    Abe K, Saito N, Kasuga F, Yamamoto S (2004) Prolonged incubation period of salmonellosis associated with low bacterial doses. J Food Prot 67:2735–2740CrossRefGoogle Scholar
  6. 6.
    Vázquez EG, Torres AH, Martínez JAH, Gómez JG (2014) Infecciones por Salmonella y Yersinia. Medicine (Spain) 11:3322–3326.  https://doi.org/10.1016/S0304-5412(14)70777-2 CrossRefGoogle Scholar
  7. 7.
    Batchelor M, Hopkins KL, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, Liebana E (2005) Characterization of AmpC-mediated resistance in clinical Salmonella isolates recovered from humans during the period 1992 to 2003 in England and Wales. J Clin Microbiol 43:2261–2265.  https://doi.org/10.1128/JCM.43.5.2261-2265.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME (2012) Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to enterobacteriaceae producing extended-spectrum beta-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 67:2793–2803.  https://doi.org/10.1093/jac/dks301 CrossRefPubMedGoogle Scholar
  9. 9.
    Djeffal S, Mamache B, Elgroud R, Hireche S, Bouaziz O (2018) Prevalence and risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Vet World 11:1102–1108.  https://doi.org/10.14202/vetworld.2018.1102-1108 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang L, Fu Y, Xiong Z, Ma Y, Wei Y, Qu X, Zhang H, Zhang J, Liao M (2018) Highly prevalent multidrug-resistant Salmonella from chicken and pork meat at retail markets in Guangdong, China. Front Microbiol 9:1–9.  https://doi.org/10.3389/fmicb.2018.02104 CrossRefGoogle Scholar
  11. 11.
    Gould LH, Walsh K, Vieira AR, Herman K, Williams IT, Hall AJ, Cole D (2013) Surveillance for foodborne disease outbreaks—United States, 1998–2008. MMWR 62:1–34PubMedGoogle Scholar
  12. 12.
    Saeed AA, Hasoon MF, Mohammed MH (2013) Isolation and molecular identification of Salmonella typhimurium from chicken meat in Iraq. J World’s Poult Res 3:63–67Google Scholar
  13. 13.
    El-Aziz DMA (2013) Detection of Salmonella Typhimurium in retail chicken meat and chicken giblets. Asian Pac J Trop Biomed 3:678–681.  https://doi.org/10.1016/S2221-1691(13)60138-0 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hur J, Jawale C, Lee JH (2012) Antimicrobial resistance of Salmonella isolated from food animals: a review. Food Res Int 45:819–830.  https://doi.org/10.1016/j.foodres.2011.05.014 CrossRefGoogle Scholar
  15. 15.
    Lillard HS (1990) The impact of commercial processing procedures on the bacterial contamination and cross-contamination of broiler carcasses. J Food Prot 53:202–204.  https://doi.org/10.4315/0362-028X-53.3.202 CrossRefPubMedGoogle Scholar
  16. 16.
    ABPA (2017) Brazilian Association of Animal Protein. Annual report 2017. http://abpa-br.com.br/storage/files/3678c_final_abpa_ relatorio_anual*_2016_portugues_web_reduzido.pdf. Accessed 10 November 2017
  17. 17.
    Sindiavipar (Union of Poultry Products Industries of the State of Paraná) (2016) Press. PR: Poultry exports grow 19% in the first four months of the year. https://www.sindiavipar.com.br/index.php?modulo = 15& acao = detalhe&cod = 175314. Accessed 01 December 2016.
  18. 18.
    ISO (2007) Microbiology of food and animal feeding stuffs—horizontal method for the detection of Salmonella spp.—amendment 1: Annex D: detection of Salmonella spp., in animal faeces and in environmental samples from the primary production stage (ISO 6579:2002/Amd. 1:2007).Google Scholar
  19. 19.
    ISO/ST (2012) Microbiology of food and animal feeding stuffs—horizontal method for the detection, enumeration and serotyping of Salmonella—part 2: enumeration by a miniaturized most probable technique (ISO/TS 6579-2: 2012).Google Scholar
  20. 20.
    MPN Calculation Program (2013) Versão 3. http://standards.iso.org/iso/ts/6579/-2/. Accessed 18 August 2015.
  21. 21.
    Swamy SC, Barnhart HM, Lee MD, Dreesen DW (1996) Virulence determinants invA and spvC in Salmonellae isolated from poultry products, wastewater, and human sources. Appl Environ Microbiol 62:3768–3771PubMedPubMedCentralGoogle Scholar
  22. 22.
    CLSI (Clinical and Laboratory Standards Institute) (2008) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals (M31-A3), 3rd edn. Wayne, PennsylvaniaGoogle Scholar
  23. 23.
    CLSI (Clinical and Laboratory Standards Institute) (2013) Performance standards for antimicrobial susceptibility testing - informational supplement (M100-S230), 23th edn. Wayne, PennsylvaniaGoogle Scholar
  24. 24.
    EUCAST (European Committee on Antimicrobial Susceptibility Testing) (2013) Guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, version 1.0 Sweden.Google Scholar
  25. 25.
    Belaaouaj A, Lapoumeroulie C, Caniça MM, Vedel G, Névot P, Krishnamoorthy R, Paul G (1994) Nucleotide sequences of the genes coding for the tem-like beta-lactamases IRT-1 and IRT-2 (formerly called Tri-1 and Tri-2). FEMS Microbiol Lett 120:75–80.  https://doi.org/10.1111/j.1574-6968.1994.tb07010.x CrossRefPubMedGoogle Scholar
  26. 26.
    M’zali FM, Gascoyne-Binzi DM, Heritage J, Hawkey PM (1996) Brief reports Detection of mutations conferring extended-spectrum activity on SHV/beta-lactamases using polymerase chain reaction single strand conformational polymorphism ( PCR-SSCP). J Antimicrob Chemother 37:797–802CrossRefGoogle Scholar
  27. 27.
    Féria C, Ferreira E, Correia JD, Gonçalves J, Caniça M (2002) Patterns and mechanisms of resistance to beta-lactams and beta-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J Antimicrob Chemother 49:77–85.  https://doi.org/10.1093/jac/49.1.77 CrossRefPubMedGoogle Scholar
  28. 28.
    Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L (2003) Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 47:3724–3732.  https://doi.org/10.1128/AAC.47.12.3724-3732.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67.  https://doi.org/10.1089/fpd.2006.3.59 CrossRefPubMedGoogle Scholar
  30. 30.
    Santos DMS, Berchieri A, Fernandes SA, Tavechio AT, Do Amaral LA (2000) Salmonella em carcaças de frango congeladas. Pesqui Vet Bras 20:39–42.  https://doi.org/10.1590/S0100-736X2000000100005 CrossRefGoogle Scholar
  31. 31.
    Ribeiro AR, Kellermann A, Dos Santos LR, Bessa MC, Nascimento VP (2007) Salmonella spp. in raw broiler parts: Occurrence, antimicrobial resistance profile and phage typing of the Salmonella Enteritidis isolates. Braz J Microbiol 38:296–299.  https://doi.org/10.1590/S1517-83822007000200021 CrossRefGoogle Scholar
  32. 32.
    Yamatogi RS, Oliveira HC, Possebon FS, Pantoja JCF, Joaquim JGF, Pinto JPAN, Araújo JP (2016) Qualitative and quantitative determination and resistance patterns of Salmonella from poultry carcasses. J Food Prot 79:950–955.  https://doi.org/10.4315/0362-028X.JFP-15-489 CrossRefPubMedGoogle Scholar
  33. 33.
    USDA/FSIS (2012) The nationwide microbiological baseline data collection program: raw chicken parts survey (RCPBS), January 2012 – August 2012. https://www.fsis.usda.gov/shared/PDF/Baseline_Data_Raw_Chicken_Parts.pdf. Accessed 10 December 2016.
  34. 34.
    Gonçalves-Tenório A, Silva BN, Rodrigues V, Cadavez V, Gonzales-Barron U (2018) Prevalence of pathogens in poultry meat: a meta-analysis of European published surveys. Foods 7:2–16.  https://doi.org/10.3390/foods7050069 CrossRefGoogle Scholar
  35. 35.
    Smadi H, Sargeant JM, Shannon HS, Raina P (2012) Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis. J Epidemiol Glob Health 2:165–179.  https://doi.org/10.1016/j.jegh.2012.12.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Juneja VK, Eblen BS, Ransom GM (2001) Thermal inactivation of Salmonella spp. in chicken broth, beef, pork, turkey, and chicken: determination of D- and Z values. J Food Sci 66:146–152.  https://doi.org/10.1111/j.1365-2621.2001.tb15597.x CrossRefGoogle Scholar
  37. 37.
    Motta SPO, Flint S, Perry P, Noble A (2014) Consumer contribution to food contamination in Brazil: modelling the food safety risk in the home. Braz J Food Technol 17:154–165.  https://doi.org/10.1590/bjft.2014.018 CrossRefGoogle Scholar
  38. 38.
    Soares VM, Pereira JG, Viana C, Izidoro TB, Bersot LS, Pinto JPAN (2012) Transfer of Salmonella Enteritidis to four types of surfaces after cleaning procedures and cross-contamination to tomatoes. Food Microbiol 30:453–456.  https://doi.org/10.1016/j.fm.2011.12.028 CrossRefPubMedGoogle Scholar
  39. 39.
    Mion L, Parizotto L, Santos LA, Webber B, Cisco IC, Pilotto F, Rodrigues LB, Nascimento VP, Santos LR (2016) Salmonella spp. Isolated by miniaturized most probable number and conventional microbiology in poultry slaughterhouses. Acta Sci Vet 44:1–5Google Scholar
  40. 40.
    Santos LA, Mion L, Marotzki M, Parizotto L, Rodrigues LB, Nascimento VP, Santos LR (2015) Número mais provável miniaturizado e microbiologia convencional para isolamento de Salmonella spp. em abatedouros de frangos de corte. Pesqui Vet Bras 35:223–229.  https://doi.org/10.1590/S0100-736X2015000300003 CrossRefGoogle Scholar
  41. 41.
    Lee S, Choi D, Kim H, Kim D, Seo K (2016) Prevalence, seasonal occurrence, and antimicrobial resistance of Salmonella spp. Isolates recovered from chicken carcasses sampled at major poultry processing plants of South Korea Foodborne. Pathog Dis 13:544–550.  https://doi.org/10.1089/fpd.2016.2144 CrossRefGoogle Scholar
  42. 42.
    Oscar TP, Rutto GK, Ludwig JB, Parveen S (2010) Qualitative map of Salmonella contamination on young chicken carcasses. J Food Prot 73:1596–1603CrossRefGoogle Scholar
  43. 43.
    Brazil (2017) Ministry of Agriculture, Livestock and Supply. Normative Instruction n 08, of 17 February 2017. http://www.imprensanacional.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/20472445/do1-2017-03-03-instrucao-normativa-n-8-de-17-de-fevereiro-de-2017-20472317. Accessed 23 September 2017.
  44. 44.
    Brazil (2003) Ministry of Agriculture, Livestock and Supply. Normative Instruction n 78, of 3 November 2003. http://www.adepara.pa.gov.br/sites/default/files/INSTRU% C3%87%C3%83O%20NORMATIVA%20N%C2%BA%2078%2C%20SALMONELLA_0.pdf. Accessed 10 August 2015.Google Scholar
  45. 45.
    Kanashiro AMI, Stoppa GFZ, Cardoso ALSP, Tessari ENC, Castro AGM (2005) Serovars of Salmonella spp. isolated from broiler chickens and commercial breeders in diverse regions in Brazil from July 1997 to December 2004. Rev Bras Cienc Avic 7:195–198.  https://doi.org/10.1590/S1516-635X2005000300010 CrossRefGoogle Scholar
  46. 46.
    Leal NC, Sá AT, Solari CA, Silva SJ, Hofer E (1987) Sorovares de Salmonella isolados de processos entéricos humanos em Recife-Pernambuco, durante o triênio 1978-1980. Mem Inst Oswaldo Cruz 82:43–49CrossRefGoogle Scholar
  47. 47.
    Hofer E, Zamora MRN, Lopes AE, Moura AMC, Araújo HL, Leite JDD, Leite MDD, Silva Filho SJ (2000) Sorovares de Salmonella em carne de equídeos abatidos no nordeste do Brasil. Pesqui Vet Bras 20:80–84.  https://doi.org/10.1590/S0100-736X2000000200005 CrossRefGoogle Scholar
  48. 48.
    McDermott PF, Tyson GH, Kabera C, Chen Y, Li C, Folster JP, Ayers SL, Lam C, Tate HP, Zhao S (2016) Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother 60:5515–5520.  https://doi.org/10.1128/AAC.01030-16 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pribul BR, Festivo ML, Rodrigues MS, Costa RG, dos Rodrigues ECP, de Souza MMS, dos Rodrigues DP (2017) Characteristics of quinolone resistance in Salmonella spp. isolates from the food chain in Brazil. Front Microbiol 8:299.  https://doi.org/10.3389/fmicb.2017.00299 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ribeiro VB, Lincopan N, Landgraf M, Franco BDGM, Destro MT (2011) Characterization of class 1 integrons and antibiotic resistance genes in multidrug-resistant Salmonella enterica isolates from foodstuff and related sources. Braz J Microbiol 42:685–692.  https://doi.org/10.1590/S1517-838220110002000033 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yang B, Qiao L, Zhang X, Cui Y, Xia X, Cui S, Wang X, Meng X, Ge W, Shi X, Wang D, Meng J (2013) Serotyping, antimicrobial susceptibility, pulsed field gel electrophoresis analysis of Salmonella isolates from retail foods in Henan Province. China Food Control 32:228–235.  https://doi.org/10.1016/j.foodcont.2012.11.022 CrossRefGoogle Scholar
  52. 52.
    Stevenson JE, Gay K, Barrett TJ, Medalla F, Chiller TM, Angulo FJ (2003) Increase in nalidixic acid resistance among non-Typhi Salmonella enterica isolates in the United States from 1996 to 2003. Antimicrob Agents Chemother 51:195–195CrossRefGoogle Scholar
  53. 53.
    Casin I, Breuil J, Darchis JP, Guelpa C, Collatz E (2003) Fluoroquinolone resistance linked to GyrA, GyrB, and ParC mutations in Salmonella enterica typhimurium isolates in humans. Emerg Infect Dis 9:1455–1457.  https://doi.org/10.3201/eid0911.030317 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Eaves DJ, Randall L, Gray DT, Buckley A, Woodward MJ, White AP, Piddock LJV (2004) Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob Agents Chemother 48:4012–4015.  https://doi.org/10.1128/AAC.48.10.4012-4015.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Parry CM, Threlfall EJ (2008) Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr Opin Infect Dis 21:531–538.  https://doi.org/10.1097/QCO.0b013e32830f453a CrossRefPubMedGoogle Scholar
  56. 56.
    Pribul BR, Festivo ML, Rodrigues MS, Costa RG, Rodrigues ECP, de Souza MMS, Rodrigues DP (2017) Characteristics of quinolone resistance in Salmonella spp. Isolates from the food chain in Brazil. Front. Microbiol. 8:299.  https://doi.org/10.3389/fmicb.2017.00299
  57. 57.
    Almeida F, Seribelli AA, Medeiros MIC, DDP R, de Mello Varani AD, Luo Y, Allard MW, Falcão JP (2018) Phylogenetic and antimicrobial resistance gene analysis of Salmonella Typhimurium strains isolated in Brazil by whole genome sequencing. PLoS One 13:1–16.  https://doi.org/10.1371/journal.pone.0201882 CrossRefGoogle Scholar
  58. 58.
    Fitch FM, Carmo-Rodrigues MS, Oliveira VG, Gaspari MV, Dos Santos A, De Freitas JB, Pignatari AC (2016) β-Lactam resistance genes: characterization, epidemiology, and first detection of blaCTX-M-1 and blaCTX-M-14 in Salmonella spp. Isolated from poultry in Brazil-Brazil Ministry of Agriculture’s Pathogen Reduction Program. Microb. Drug Resist 22:164–171.  https://doi.org/10.1089/mdr.2015.0143 CrossRefGoogle Scholar
  59. 59.
    Fonzé E, Charlier P, To’th Y, Vermeire M, Raquet X, Dubus A, Frère JM (1995) TEM1 Beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant. Acta Crystallogr D Biol Crystallogr 51:682–694.  https://doi.org/10.1107/S0907444994014496 CrossRefPubMedGoogle Scholar
  60. 60.
    Falagas ME, Karageorgopoulos DE (2009) Extended-spectrum beta-lactamase-producing organisms. J Hosp Infect 73:345–354.  https://doi.org/10.1016/j.jhin.2009.02.021 CrossRefPubMedGoogle Scholar
  61. 61.
    Peirano G, Agerso Y, Aarestrup FM, Dos Reis EM, Rodrigues DP (2006) Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil. J Antimicrob Chemother 58:305–309.  https://doi.org/10.1093/jac/dkl248 CrossRefPubMedGoogle Scholar
  62. 62.
    Ziech RE, Lampugnani C, Perin AP, Sereno MJ, Sfaciotte RAP, Viana C, Soares VM, Pinto JPAN, Bersot LS (2016) Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants. Braz J Microbiol 47:191–195.  https://doi.org/10.1016/j.bjm.2015.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Brazil (1998) Ministry of Agriculture, Livestock and Supply. Ordinance n 448, of 10 September 1998. http://www.sgc.goias.gov.br/upload/arquivos/2012-01/pamvet.pdf. Accessed 11 March 2016.
  64. 64.
    Scur MC, Pinto FGS, Bona EAM, Weber LD, Alves LFA, Moura AC (2014) Occurrence and antimicrobial resistance of Salmonella serotypes isolates recovered from poultry of Western Paraná. Brazil Afr J Agric Res 9:823–830.  https://doi.org/10.5897/AJAR2013.8202 CrossRefGoogle Scholar
  65. 65.
    Cortez ALL, Carvalho ACFB, Ikuno AA, Bürger KP, Vidal-Martins AMC (2006) Resistência antimicrobiana de cepas de Salmonella spp. isoladas de abatedouros de aves. Arq Inst Biol 73:157–163Google Scholar
  66. 66.
    Tennant SM, Maclennan CA, Simon R, Martin LB, Khan MI (2016) Nontyphoidal Salmonella disease: current status of vaccine research and development. Vaccine 34:29072910.  https://doi.org/10.1016/j.vaccine.2016.03.072 CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Ana Paula Perin
    • 1
  • Bruna Torres Furtado Martins
    • 2
  • Marco Antônio Bacellar Barreiros
    • 3
  • Ricardo Seiti Yamatogi
    • 2
  • Luís Augusto Nero
    • 2
  • Luciano dos Santos Bersot
    • 1
    Email author
  1. 1.Department of Veterinary Science, Palotina SectorFederal University of ParanáParanáBrazil
  2. 2.Department of Veterinary MedicineFederal University of ViçosaViçosaBrazil
  3. 3.Bioscience Department, Palotina SectorFederal University of ParanáParanáBrazil

Personalised recommendations