Dynamics of microbial contaminants is driven by selection during ethanol production

  • Luciano Lopes Queiroz
  • Maria Silveira Costa
  • Alcilene de Abreu Pereira
  • Marcelo de Paula Avila
  • Patrícia Silva Costa
  • Andréa Maria Amaral Nascimento
  • Gustavo Augusto LacorteEmail author
Food Microbiology - Research Paper


Brazil is the second largest ethanol producer in the world and largest using sugarcane feedstock. Bacteria contamination is one of the most important issues faced by ethanol producers that seek to increase production efficiency. Each step of production is a selection event due to the environmental and biological changes that occur. Therefore, we evaluated the influence of the selection arising from the ethanol production process on diversity and composition of bacteria. Our objectives were to test two hypotheses, (1) that species richness will decrease during the production process and (2) that lactic acid bacteria will become dominant with the advance of ethanol production. Bacterial community assemblage was accessed using 16S rRNA gene sequencing from 19 sequential samples. Temperature is of great importance in shaping microbial communities. Species richness increased between the decanter and must steps of the process. Low Simpson index values were recorded at the fermentation step, indicating a high dominance of Lactobacillus. Interactions between Lactobacillus and yeast may be impairing the efficiency of industrial ethanol production.


Ethanolic fermentation Sugarcane Distillery Selection Microbial ecology 



We would like to thank Bruno Spacek for critical reviews of the manuscript.

Funding information

This work was granted by Instituto Federal de Minas Gerais, Edital de Pesquisa Aplicada no. 156/2013.

Supplementary material

42770_2019_147_MOESM1_ESM.docx (1013 kb)
ESM 1 (DOCX 1012 kb)


  1. 1.
    Lopes ML, Paulillo SC d L, Godoy A et al (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47:64–76. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amorim HV, Lopes ML, De Castro Oliveira JV et al (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275. CrossRefPubMedGoogle Scholar
  3. 3.
    Basso L, Basso T, Rocha S (2011) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. Biofuel Prod - Recent Dev Prospect 1530:85–100. CrossRefGoogle Scholar
  4. 4.
    Costa OYA, Souto BM, Tupinambá DD et al (2015) Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. J Ind Microbiol Biotechnol 42:73–84. CrossRefPubMedGoogle Scholar
  5. 5.
    Bischoff KM, Liu S, Leathers TD et al (2009) Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng 103:117–122. CrossRefPubMedGoogle Scholar
  6. 6.
    Brexó RP, Sant’ Ana A d S (2018) Microbial interactions during sugar cane must fermentation for bioethanol production: does quorum sensing play a role? Crit Rev Biotechnol 38:231–244. CrossRefPubMedGoogle Scholar
  7. 7.
    Worley-Morse TO, Deshusses MA, Gunsch CK (2015) Reduction of invasive bacteria in ethanol fermentations using bacteriophages. Biotechnol Bioeng 112:1544–1553. CrossRefPubMedGoogle Scholar
  8. 8.
    Muthaiyan A, Limayem A, Ricke SC (2011) Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci 37:351–370. CrossRefGoogle Scholar
  9. 9.
    Bayrock DP, Ingledew WM (2004) Inhibition of yeast by lactic acid bacteria in continuous culture: nutrient depletion and/or acid toxicity? J Ind Microbiol Biotechnol 31:362–368. CrossRefPubMedGoogle Scholar
  10. 10.
    Castro REN de, Alves RM de B, Nascimento CAO do, Giudici R (2019) Assessment of Sugarcane-Based Ethanol Production. In: Basso TP, Basso LC (ed) Fuel Ethanol Production from Sugarcane. 1st edn. IntechOpen, pp 3–21. Google Scholar
  11. 11.
    Lucena BTL, Dos Santos BM, Moreira JLS et al (2010) Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 10. CrossRefGoogle Scholar
  12. 12.
    Bonatelli ML, Quecine MC, Silva MS, Labate CA (2017) Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. FEMS Microbiol Lett 364.
  13. 13.
    Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206. CrossRefPubMedGoogle Scholar
  14. 14.
    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lenski RE (2017) Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J:1–14. CrossRefGoogle Scholar
  16. 16.
    Klindworth A, Pruesse E, Schweer T et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pylro VS, Roesch LFW, Morais DK et al (2014) Data analysis for 16S microbial profiling from different benchtop sequencing platforms. J Microbiol Methods 107:30–37. CrossRefPubMedGoogle Scholar
  18. 18.
    Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. CrossRefGoogle Scholar
  21. 21.
    Fay MP, Proschan MA (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv 4:1–39. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Murtagh F, Legendre P (2014) Ward ’ s hierarchical agglomerative clustering method : which algorithms implement ward ’ s criterion ? J Classif 31:274–295. CrossRefGoogle Scholar
  23. 23.
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. Google Scholar
  24. 24.
    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  25. 25.
    Wickham H (2016) ggplot2. Springer International Publishing, ChamCrossRefGoogle Scholar
  26. 26.
    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Oksanen J, Blanchet FG, Friendly M, et al (2019) vegan: Community Ecology Package. R package version 2.5–5.
  28. 28.
    Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408. CrossRefPubMedGoogle Scholar
  29. 29.
    Hill M (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. CrossRefGoogle Scholar
  30. 30.
    Haegeman B, Hamelin J, Moriarty J et al (2013) Robust estimation of microbial diversity in theory and in practice. ISME J 7:1092–1101. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kamboj K, Vasquez A, Balada-Llasat JM (2015) Identification and significance of Weissella species infections. Front Microbiol 6:1–7. CrossRefGoogle Scholar
  32. 32.
    Fairfax MR, Lephart PR, Salimnia H (2014) Weissella confusa: problems with identification of an opportunistic pathogen that has been found in fermented foods and proposed as a probiotic. Front Microbiol 5:1–5. CrossRefGoogle Scholar
  33. 33.
    Fusco V, Quero GM, Cho GS et al (2015) The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 6.
  34. 34.
    Hammes WP, Vogel RF (1995) The genus Lactobacillus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Springer US, Boston, pp 19–54CrossRefGoogle Scholar
  35. 35.
    Goh KM, Gan HM, Chan KG et al (2014) Analysis of Anoxybacillus genomes from the aspects of lifestyle adaptations, prophage diversity, and carbohydrate metabolism. PLoS One 9. CrossRefGoogle Scholar
  36. 36.
    Studholme DJ (2015) Some (bacilli) like it hot: genomics of Geobacillus species. Microb Biotechnol 8:40–48. CrossRefPubMedGoogle Scholar
  37. 37.
    Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology (United Kingdom) 160:1–11. CrossRefGoogle Scholar
  38. 38.
    Goh KM, Kahar UM, Chai YY et al (2013) Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 97:1475–1488. CrossRefPubMedGoogle Scholar
  39. 39.
    Doughari HJ, Ndakidemi PA, Human IS, Benade S (2011) The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ 26:101–112. CrossRefPubMedGoogle Scholar
  40. 40.
    Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. In: Microbial Reactions. Advances in Biochemical Engineering. Springer, Berlin, Heidelberg, pp 37–84Google Scholar
  41. 41.
    Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46PubMedPubMedCentralGoogle Scholar
  42. 42.
    Aris JP, Benner SA, Thomson JM et al (2005) Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet 37:630–635. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Basso TO, Oliveira Lino FS de (2019) Clash of Kingdoms: How Do Bacterial Contaminants Thrive in and Interact with Yeasts during Ethanol Production? In: Fuel Ethanol Production from Sugarcane. In: Basso TP, Basso LC (ed) Fuel Ethanol Production from Sugarcane. 1st edn. IntechOpen, pp 3–21. CrossRefGoogle Scholar
  44. 44.
    Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71:2239–2243. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Narendranath NV, Hynes SH, Thomas KC, Ingledew WM (1997) Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl Environ Microbiol 63:4158–4163PubMedPubMedCentralGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Luciano Lopes Queiroz
    • 1
    • 2
  • Maria Silveira Costa
    • 3
  • Alcilene de Abreu Pereira
    • 3
  • Marcelo de Paula Avila
    • 4
  • Patrícia Silva Costa
    • 4
  • Andréa Maria Amaral Nascimento
    • 4
  • Gustavo Augusto Lacorte
    • 1
    • 3
    Email author
  1. 1.Food Research Center (FoRC), Department of Food Sciences and Experimental Nutrition, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Microbiology Graduate Program, Department of Microbiology, Institute of Biomedical ScienceUniversity of São PauloSão PauloBrazil
  3. 3.Molecular Biology Lab, Federal Institute of Minas GeraisBambuí CampusBambuíBrazil
  4. 4.Laboratório de Genética de Microrganismos, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations