Assessing nickel tolerance of bacteria isolated from serpentine soils

  • Flávio Silva Costa
  • Maria Wanna Figueiredo Sena Macedo
  • Ana Carolina Moreira Araújo
  • Cassimira Albuquerque Rodrigues
  • Eiko Eurya Kuramae
  • Silvia Keli de Barros Alcanfor
  • Marco Pessoa-Filho
  • Cristine Chaves BarretoEmail author
Environmental Microbiology - Research Paper


Serpentine soils present unique characteristics such as a low Ca/Mg ratio, low concentration of nutrients, and a high concentration of heavy metals, especially nickel. Soil bacterial isolates from an ultramafic complex located in the tropical savanna known as the Brazilian Cerrado were studied. Nickel-tolerant bacteria were obtained, and their ability to remove nickel from a culture medium was assessed. Bacterial isolates presented higher tolerance to nickel salts than previously reported for bacteria obtained from serpentine environments in other regions of the world. In addition, the quantification of nickel in cell pellets indicated that at least four isolates may adsorb soluble forms of nickel. It is expected that information gathered in this study will support future efforts to exploit serpentine soil bacteria for biotechnological processes involving nickel decontamination from environmental samples.


Heavy metal resistance Serpentine soils Nickel tolerance 



We thank Anglo American and their team at the Barro Alto plant for their support.

Funding information

This work was supported by FAP-DF, the Federal District Research Foundation (Grant 193.000.197/2014); CNPq, the National Council for Scientific and Technological Development, Brazil (Grant 830009/2003-5); EMBRAPA Macroprograma 3 (Grant; and CAPES, Coordination for the Improvement of Higher Education Personnel, Brazil (Grant 8881.062152/2014-1). Publication number 6641 of The Netherlands Institute of Ecology (NIOO-KNAW).

Supplementary material

42770_2019_111_Fig3_ESM.png (123 kb)
Figure S1

Schematic representation of the experimental design. (PNG 122 kb)

42770_2019_111_MOESM1_ESM.tif (1.2 mb)
High Resolution Image (TIF 1.15 mb)
42770_2019_111_MOESM2_ESM.pdf (74 kb)
Figure S2 Phylogenetic tree based on 16S rRNA gene sequences of thirteen elected isolates that were evaluated for nickel tolerance. The evolutionary history was inferred using the Maximum-likelihood method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. (PDF 74 kb)
42770_2019_111_MOESM3_ESM.docx (22 kb)
ESM 3 (DOCX 21.7 kb)


  1. 1.
    Raous S, Becquer T, Garnier J, de Souza Martins É, Echevarria G, Sterckeman T (2010) Mobility of metals in nickel mine spoil materials. Appl Geochem 25(11):1746–1755Google Scholar
  2. 2.
    Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293(1–2):107–119Google Scholar
  3. 3.
    Rajakaruna N (2018) Lessons on evolution from the study of edaphic specialization. Bot Rev 84(1):39–78Google Scholar
  4. 4.
    Venter A, Siebert S, Rajakaruna N et al (2018) Biological crusts of serpentine and non-serpentine soils from the Barberton Greenstone Belt of South Africa. Ecol Res: 33(3): 629-640. Google Scholar
  5. 5.
    Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38(9):2882–2889Google Scholar
  6. 6.
    Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5(4):367–379Google Scholar
  7. 7.
    Ma Y, Rajkumar M, Freitas H (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166(2–3):1154–1161Google Scholar
  8. 8.
    Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 77(2):153–160Google Scholar
  9. 9.
    Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331(1–2):5–16Google Scholar
  10. 10.
    Oline DK (2006) Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Appl Environ Microbiol 72(11):6965–6971Google Scholar
  11. 11.
    Pessoa-Filho M, Barreto CC, dos Reis Junior FB, Fragoso RR, Costa FS, de Carvalho Mendes I, de Andrade LRM (2015) Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie Van Leeuwenhoek 107(4):935–949. Google Scholar
  12. 12.
    Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere. 68(2):360–367. Google Scholar
  13. 13.
    Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70(5):2667–2677Google Scholar
  14. 14.
    Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3(11):691–698Google Scholar
  15. 15.
    Schlegel HG, Cosson J, Baker AJM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot acta 104(1):18–25Google Scholar
  16. 16.
    Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207Google Scholar
  17. 17.
    Fashola M, Ngole-Jeme V, Babalola O (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13(11):1047Google Scholar
  18. 18.
    Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47(6):453–467Google Scholar
  19. 19.
    Malkoc S, Kaynak E, Guven K (2016) Biosorption of zinc (II) on dead and living biomass of Variovorax paradoxus and Arthrobacter viscosus. Desalin Water Treat 57(33):15445–15454Google Scholar
  20. 20.
    Ahmed MMA, El-Bondkly AMA (2016) Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014. Braz J Microbiol 47(3):571Google Scholar
  21. 21.
    Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24(1):58–68Google Scholar
  22. 22.
    Li H, Lin Y, Guan W, Chang J, Xu L, Guo J, Wei G (2010) Biosorption of Zn (II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J Hazard Mater 179(1–3):151–159Google Scholar
  23. 23.
    Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. Int Biodeterior Biodegradation 88:48–55Google Scholar
  24. 24.
    Tabaraki R, Ahmady-Asbchin S, Abdi O (2013) Biosorption of Zn (II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil. J Environ Chem Eng 1(3):604–608Google Scholar
  25. 25.
    Johnson DB, Grail BM, Hallberg KB (2013) A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores. Minerals. 3(1):49–58Google Scholar
  26. 26.
    Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49(1):1–7Google Scholar
  27. 27.
    Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69(12):7210–7215.
  28. 28.
    Kielak AMAM, Barreto CCCC, Kowalchuk GAGA, van Veen JAJA, Kuramae EEEE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7(MAY).
  29. 29.
    de Castro VHL, Schroeder LF, Quirino BF, Kruger RH, Barreto CC (2013) Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. Can J Microbiol 59(11):746–753. Google Scholar
  30. 30.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor laboratory pressGoogle Scholar
  31. 31.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E. and Goodfellow, M., Eds., Nucleic Acid Techniques in Bacterial Systematic, John Wiley and Sons, New York, 115-175Google Scholar
  32. 32.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  33. 33.
    Cole JR, Wang Q, Cardenas E et al (2008) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(suppl_1):D141–D145Google Scholar
  34. 34.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267Google Scholar
  35. 35.
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549Google Scholar
  36. 36.
    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526Google Scholar
  37. 37.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N Y) 39(4):783–791Google Scholar
  38. 38.
    Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101(30):11030–11035Google Scholar
  39. 39.
    McNaught, A. D., & Wilkinson, A. (1997). Compendium of chemical terminology. IUPAC recommendations.Google Scholar
  40. 40.
    Mergeay M (1995) Heavy metal resistances in microbial ecosystems. In: Molecular Microbial Ecology Manual (pp. 439-455). Springer, Dordrecht.Google Scholar
  41. 41.
    Thomsen V, Schatzlein D, Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy. 18(12):112–114Google Scholar
  42. 42.
    Pal A, Wauters G, Paul AK (2007) Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant Soil 293(1–2):37–48Google Scholar
  43. 43.
    Abou-Shanab RAI, Van Berkum P, Angle JS et al (2010) Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol 26(1):101–108Google Scholar
  44. 44.
    Turgay OC, Görmez A, Bilen S (2012) Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey. Environ Monit Assess 184(1):515–526Google Scholar
  45. 45.
    Saintpierre D, Amir H, Pineau R, Sembiring L, Goodfellow M (2003) Streptomyces yatensis sp. nov., a novel bioactive streptomycete isolated from a New-Caledonian ultramafic soil. Antonie Van Leeuwenhoek 83(1):21–26Google Scholar
  46. 46.
    Saintpierre-Bonaccio D, Amir H, Pineau R, Lemriss S, Goodfellow M (2004) Streptomyces ferralitis sp. nov., a novel streptomycete isolated from a New-Caledonian ultramafic soil. Int J Syst Evol Microbiol 54(6):2061–2065Google Scholar
  47. 47.
    Saintpierre-Bonaccio D, Amir H, Pineau R, Tan GYA, Goodfellow M (2005) Amycolatopsis plumensis sp. nov., a novel bioactive actinomycete isolated from a New-Caledonian brown hypermagnesian ultramafic soil. Int J Syst Evol Microbiol 55(5):2057–2061Google Scholar
  48. 48.
    Saintpierre-Bonaccio D, Maldonado LA, Amir H, Pineau R, Goodfellow M (2004) Nocardia neocaledoniensis sp. nov., a novel actinomycete isolated from a New-Caledonian brown hypermagnesian ultramafic soil. Int J Syst Evol Microbiol 54(2):599–603Google Scholar
  49. 49.
    Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99(9):3491–3498Google Scholar
  50. 50.
    Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere. 75(6):719–725Google Scholar
  51. 51.
    Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53(2):306–316Google Scholar
  52. 52.
    Pal A, Choudhuri P, Dutta S, Mukherjee PK, Paul AK (2004) Isolation and characterization of nickel-resistant microflora from serpentine soils of Andaman. World J Microbiol Biotechnol 20(9):881–886Google Scholar
  53. 53.
    Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology. 149(8):1959–1970Google Scholar
  54. 54.
    Chaintreuil C, Rigault F, Moulin L, Jaffre T, Fardoux J, Giraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl Environ Microbiol 73(24):8018–8022Google Scholar
  55. 55.
    Kim DW, Cha DK, Wang J, Huang CP (2002) Heavy metal removal by activated sludge: influence of Nocardia amarae. Chemosphere. 46(1):137–142Google Scholar
  56. 56.
    Schmidt A, Haferburg G, Schmidt A, Lischke U, Merten D, Ghergel F, Büchel G, Kothe E (2009) Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chem Erde-Geochem 69:35–44Google Scholar
  57. 57.
    Nosanchuk JD, Casadevall A (2003) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5(4):203–223Google Scholar
  58. 58.
    Coisne S, Bechet M, Blondeau R (1999) Actinorhodin production by Streptomyces coelicolor A3 (2) in iron-restricted media. Lett Appl Microbiol 28(3):199–202Google Scholar
  59. 59.
    Grafe U, Radics L (1986) Isolation and structure elucidation of 6-(3′-methylbuten-2′-yl) isatin, an unusual metabolite from Streptomyces albus. J Antibiot (Tokyo) 39(1):162–163Google Scholar
  60. 60.
    Pankratov TA, Tindall BJ, Liesack W, Dedysh SN (2007) Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57(10):2349–2354. Google Scholar
  61. 61.
    Scott JA, Palmer SJ (1988) Cadmium bio-sorption by bacterial exopolysaccharide. Biotechnol Lett 10(1):21–24Google Scholar
  62. 62.
    Vu B, Chen M, Crawford R, Ivanova E (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 14(7):2535–2554Google Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Flávio Silva Costa
    • 1
    • 2
  • Maria Wanna Figueiredo Sena Macedo
    • 1
  • Ana Carolina Moreira Araújo
    • 1
  • Cassimira Albuquerque Rodrigues
    • 1
  • Eiko Eurya Kuramae
    • 3
  • Silvia Keli de Barros Alcanfor
    • 4
  • Marco Pessoa-Filho
    • 5
  • Cristine Chaves Barreto
    • 1
    Email author
  1. 1.Graduate Program in Genomic Sciences and BiotechnologyUniversidade Católica de BrasíliaBrasiliaBrazil
  2. 2.Institute of MicrobiologyFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Department of Microbial EcologyNederlands Instituut vor Ecologie (NIOO-KNAW)WageningenThe Netherlands
  4. 4.Department of ChemistryUniversidade Católica de BrasíliaBrasiliaBrazil
  5. 5.Embrapa CerradosBrasiliaBrazil

Personalised recommendations