Hydrocarbon-associated substrates reveal promising fungi for poly (ethylene terephthalate) (PET) depolymerization

  • Lusiane Malafatti-PiccaEmail author
  • Michel Ricardo de Barros Chaves
  • Aline Machado de Castro
  • Érika Valoni
  • Valéria Maia de Oliveira
  • Anita Jocelyne Marsaioli
  • Dejanira de Franceschi de Angelis
  • Derlene Attili-Angelis
Biotechnology and Industrial Microbiology - Research Paper


Recalcitrant characteristics and insolubility in water make the disposal of synthetic polymers a great environmental problem to be faced by modern society. Strategies towards the recycling of post-consumer polymers, like poly (ethylene terephthalate, PET) degradation/depolymerization have been studied but still need improvement. To contribute with this purpose, 100 fungal strains from hydrocarbon-associated environments were screened for lipase and esterase activities by plate assays and high-throughput screening (HTS), using short- and long-chain fluorogenic probes. Nine isolates were selected for their outstanding hydrolytic activity, comprising the genera Microsphaeropsis, Mucor, Trichoderma, Westerdykella, and Pycnidiophora. Two strains of Microsphaeropsis arundinis were able to convert 2–3% of PET nanoparticle into terephthalic acid, and when cultured with two kinds of commercial PET bottle fragments, they also promoted weight loss, surface and chemical changes, increased lipase and esterase activities, and led to PET depolymerization with release of terephthalic acid at concentrations above 20.0 ppm and other oligomers over 0.6 ppm. The results corroborate that hydrocarbon-associated areas are important source of microorganisms for application in environmental technologies, and the sources investigated revealed important strains with potential for PET depolymerization.


Bioeconomy Enzymes Polymer biodegradation 



The authors thank PETROBRAS for their authorization to publish this study, and to MSc. Tulio de Lucca Capelini for technical support. We thank the Center for Environmental Studies (CEA) for providing site and infrastructure to carry out part of this work.

Funding information

The authors received financial support from PETROBRAS (2012/00327-7). One of the authors (L.M.P.) received a support grant from the Coordination for the Improvement of Higher Education Personnel (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

42770_2019_93_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1898 kb)


  1. 1.
    United States Environmental Protection Agency (USEPA). The facts on recycling plastics. 1990 (February) . Accessed 10 January 2018
  2. 2.
    Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the future of plastics. Ellen MacArthur Found. 2016;(January):120.
  3. 3.
    Associação Brasileira da Indústria do PET (ABIPET). 10° Censo da reciclagem do PET no Brasil. 2016 (November). Accessed 10 January 2018
  4. 4.
    National Association for PET Container Resources (NAPCOR). Report on Postconsumer PET Container Recycling Activity in 2012. 2013:13. Accessed 10 January 2018
  5. 5.
    Di Souza L, Torres MCM, Ruvolo Filho AC (2008) Despolimerização do poli (tereftalato de etileno) - PET: efeitos de tensoativos e excesso de solução alcalina. Polímeros. 18(4):334–341. Google Scholar
  6. 6.
    Pellis A, Gamerith C, Ghazaryan G, Ortner A, Herrero E, Guebitz GM (2016) Bioresource technology ultrasound-enhanced enzymatic hydrolysis of poly (ethylene terephthalate ). Bioresour Technol 218:1–5. Google Scholar
  7. 7.
    de Castro AM, Carniel A, Nicomedes Junior J, da Conceição GA, Valoni É (2017) Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources. J Ind Microbiol Biotechnol 44(6):835–844. Google Scholar
  8. 8.
    Ronkvist ÅM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules. 42(14):5128–5138. Google Scholar
  9. 9.
    Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742. Google Scholar
  10. 10.
    Sharon C, Sharon M (2012) Studies on biodegradation of polyethylene terephthalate: a synthetic polymer. J Microbiol Biotechnol Res Sch Res Libr J Microbiol Biotech Res 2(2):248–257Google Scholar
  11. 11.
    Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene - a review. Int Biodeterior Biodegrad 88:83–90. Google Scholar
  12. 12.
    Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10(6):1308–1322. Google Scholar
  13. 13.
    Sharma R, Chisti Y, Chand U, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662. Google Scholar
  14. 14.
    Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39(2):235–251. Google Scholar
  15. 15.
    Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9(4):478–499. Google Scholar
  16. 16.
    Zafar U, Houlden A, Robson GD (2013) Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl Environ Microbiol 79(23):7313–7324. Google Scholar
  17. 17.
    Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules. 4(1):117–139. Google Scholar
  18. 18.
    Sayali K, Sadichha P, Surekha S (2013) Microbial esterases : an overview. Int J Curr Microbiol App Sci 2(7):135–146Google Scholar
  19. 19.
    Mazzucotelli CA, Ponce AG, Kotlar CE, Moreira M del R. Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustial by-products and waste. Food Sci Technol 2013;33(2):295–303.
  20. 20.
    Lee LP, Karbul HM, Citartan M, Gopinath SCB, Lakshmipriya T, Tang TH (2015) Lipase-secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. Biomed Res Int 2015:1–9. Google Scholar
  21. 21.
    Khannous L, Jrad M, Dammak M, Miladi R, Chaaben N, Khemakhem B, Gharsallah N, Fendri I (2014) Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions. Lipids Health Dis 13(1):9. Google Scholar
  22. 22.
    Boekema BKHL, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J (2007) Hexadecane and tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73(12):3838–3844. Google Scholar
  23. 23.
    Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9(1):69–85. Google Scholar
  24. 24.
    Wiseman, A. Introduction to principles. In: Wiseman, A (ed.,) Handbook of enzyme biotechnology 3rd edition. Padstow, Cornwall, U.K: Ellis Horwood Ltd., T.J Press; 1995: 3–8Google Scholar
  25. 25.
    Kashmiri MA, Adnan A, Butt BW (2006) Production, purification and partial characterization of lipase from Trichoderma Viride. Biotechnology. 5(10):878–882. Google Scholar
  26. 26.
    Contesini FJ, Calzado F, Valdo J, et al. Fungal metabolites. Reference series in phytochemistry. Springer. 2017:1–28.
  27. 27.
    Schneider WDH, Gonçalves TA, Uchima CA, Couger MB, Prade R, Squina FM, Dillon AJP, Camassola M (2016) Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol Biofuels 9(1):66. Google Scholar
  28. 28.
    Iftikhar T, Abdullah R, Iqtedar M, Kaleem A, et al. Production of lipases by Alternaria sp .(MBL 2810) through optimization of environmental conditions using submerged fermentation technique. Int. J. Biosci. 2015;6655:178–186Google Scholar
  29. 29.
    Rodrigues C, Cassini STA, Antunes PWP, Pinotti LM, Keller RP, Gonçalves RF (2016) Lipase-producing fungi for potential wastewater treatment and bioenergy production. Afr J Biotechnol 15(18):759–767. Google Scholar
  30. 30.
    Nwuche CO, Ogbonna JC (2011) Isolation of lipase producing fungi from palm oil mill effluent (POME) dump sites at Nsukka. Braz Arch Biol Technol 54(1):113–116. Google Scholar
  31. 31.
    Cihangir N, Sarikaya E (2004) Investigation of lipase production by a new isolate of Aspergillus sp. World J Microbiol Biotechnol 20(2):193–197. Google Scholar
  32. 32.
    Lisboa HCF, Biasetto CR, de Medeiros JB et al (2013) Endophytic fungi producing of esterases: evaluation in vitro of the enzymatic activity using pH indicator. Braz J Microbiol 44(3):923–926. Google Scholar
  33. 33.
    Pereira MG, Vici AC, Facchini FDA, Tristão AP, Cursino-Santos JR, Sanches PR, Jorge JA, Polizeli MLTM (2014) Screening of filamentous fungi for lipase production: Hypocrea pseudokoningii a new producer with a high biotechnological potential. Biocatal Biotransformation 32(1):74–83. Google Scholar
  34. 34.
    Moro S, Pacheco V, Júnior AC, Morgado AF. Isolation and screening of filamentous fungi producing extracellular lipase with potential in biodiesel production. Adv Enzym Res. 2015;(December):101–114Google Scholar
  35. 35.
    Hombalimath VS, Udapudi BB, Patil LR, Shet AN, Yaraguppi DA, Tennalli G (2012) Isolation and characterization of lipolytic microorganisms from oil contaminated soil. Int J Adv Sci Eng Technol 2(3):293–297Google Scholar
  36. 36.
    Colla LM, Ficanha AMM, Rizzardi J, Bertolin TE, Reinehr CO, Costa JAV (2015) Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation. Biomed Res Int 2015:1–9. Google Scholar
  37. 37.
    Kiama C. Isolation and characterization of hydrocarbon biodegrading fungi from oil contaminated soils in Thika, Kenya. 2015. Google Scholar
  38. 38.
    Yu D, Margesin R (2014) Partial characterization of a crude cold-active lipase from Rhodococcus cercidiphylli BZ22. Folia Microbiol (Praha) 59(5):439–445. Google Scholar
  39. 39.
    Iqbal SA, Rehman A (2015) Characterization of lipase from Bacillus subtilis I-4 and its potential use in oil contaminated wastewater. Braz Arch Biol Technol 58(5):789–797. Google Scholar
  40. 40.
    Mobarak-Qamsari E, Kasra-Kermanshahi R, Moosavi-Nejad Z (2011) Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran J Microbiol 3(2):92–98Google Scholar
  41. 41.
    Veerapagu M, Sankara Narayanan A, Ponmurugan K, Jeya KR. Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian J Pharm Clin Res. 2013;6(SUPPL.3):62–67.
  42. 42.
    Reyes-duarte D, Ferrer M, García-arellano H (2012) Lipases and Phospholipases 861:101–113. Google Scholar
  43. 43.
    Sánchez-Carbente M del R, Batista-García RA, Sánchez-Reyes A, et al. The first description of a hormone-sensitive lipase from a basidiomycete: structural insights and biochemical characterization revealed Bjerkandera adusta BaEstB as a novel esterase. Microbiology open 2017;6(4):1–15.
  44. 44.
    Ramírez L, Arrizon J, Sandoval G, Cardador A, Bello-Mendoza R, Lappe P, Mateos-Díaz JC (2008) A new microplate screening method for the simultaneous activity quantification of feruloyl esterases, tannases, and chlorogenate esterases. Appl Biochem Biotechnol 151(2–3):711–723. Google Scholar
  45. 45.
    Singh R, Gupta N, Goswami VK, Gupta R (2006) A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol 70(6):679–682. Google Scholar
  46. 46.
    Mantovani SM, De Oliveira LG, Marsaioli AJ (2010) Esterase screening using whole cells of Brazilian soil microorganisms. J Braz Chem Soc 21(8):1484–1489. Google Scholar
  47. 47.
    Chaves MRB, Lima MLSO, Malafatti-Picca L, et al. A practical fluorescence-based screening protocol for polyethylene terephthalate degrading microorganisms. J Braz Chem Soc. 2018;29(6):1278–1285.
  48. 48.
    Bi R, Lawoko M, Henriksson G. Phoma herbarum , a soil fungus able to grow on natural lignin and synthetic lignin ( DHP ) as sole carbon source and cause lignin degradation. J Ind Microbiol Biotechnol 2016;43(8):1175–1182.
  49. 49.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. Google Scholar
  50. 50.
    Burkert JFM, Maugeri F, Rodrigues MI (2004) Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol 91(1):77–84Google Scholar
  51. 51.
    He X (2003) A continuous spectrophotometric assay for the determination of diamondback moth esterase activity. Arch Insect Biochem Physiol 54(2):68–76. Google Scholar
  52. 52.
    Meier MJ, Paterson ES, Lambert IB (2015) Use of substrate-induced gene expression in metagenomic analysis of an aromatic hydrocarbon-contaminated soil. Appl Environ Microbiol 82(3):897–909. Google Scholar
  53. 53.
    Singh H (2006) Mycoremediation: fungal bioremediation. John Wiley & Sons, Inc., Hoboken, New JerseyGoogle Scholar
  54. 54.
    Mehta A, Bodh U, Gupta R (2017) Fungal lipases: a review. J Biotech Res 8(1):58–77Google Scholar
  55. 55.
    Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93. Google Scholar
  56. 56.
    Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S (2015) Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed Res Int 2015:1–11. Google Scholar
  57. 57.
    Ugochukwu KC, Agha NC, Ogbulie JN (2008) Lipase activities of microbial isolates from soil contaminated with crude oil after bioremediation. Afr J Biotechnol 7(16):2881–2884. Google Scholar
  58. 58.
    de Crecy E, Jaronski S, Lyons B, Lyons T, Keyhani N (2009) Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol 9:74. Google Scholar
  59. 59.
    Vander Meer RK, Morel L. Nestmate recognition in ants. In: Vander Meer RK, Breed M, Winston M, Espelie L. Pheromone communication in social insects. Westview Press: Boulder: Colo; 1998: 70–103Google Scholar
  60. 60.
    Menzel F, Blaimer BB, Schmitt T (2017) How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc R Soc B Biol Sci 284(1850):20161727. Google Scholar
  61. 61.
    Cervantes-gonzález E, Zambrano-monroy B, Ovando-medina VM, Briones-gallardo R, Ventura-suarez A. Influence of aromatic , heteroaromatic , and alkane hydrocarbons on the lipase activity of Pseudomonas sp . in Batch Culture. 2014;23(5):1507–1513Google Scholar
  62. 62.
    Kanwar L, Goswami P (2002) Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its application in the synthesis of isoamyl acetate using membrane-immobilised lipase. Enzym Microb Technol 31(6):727–735. Google Scholar
  63. 63.
    Rai B, Shrestha A, Sharma S, Joshi J. Screening, optimization and process scale up for pilot scale production of lipase by Aspergillus niger. Biomed Biotechnol. 2014;2(3):54–59.
  64. 64.
    Gupta P. Studies on lipase isolated from suitable microbial sources. World Journal of Pharmacy and Pharmaceutical Sciences.2016; 6(1): 1555–1566.
  65. 65.
    Kumar D, Kumar L, Nagar S, Raina C, Parshad R, Gupta VK (2012) Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Arch Appl Sci Res 4(4):1763–1770Google Scholar
  66. 66.
    Ramnath L, Sithole B, Govinden R (2017) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63(October 2016):1–14. Google Scholar
  67. 67.
    Chahinian H, Nini L, Boitard E, Dubès J-P, Comeau L-C, Sarda L (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids. 37(7):653–662. Google Scholar
  68. 68.
    Gonçalves CDCS, Marsaioli AJ (2014) Monitorando atividades enzimáticas com sondas fluorogênicas. Quim Nova 37(6):1028–1036. Google Scholar
  69. 69.
    Kulkarni N, Gadre RV (2002) Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W. J Ind Microbiol Biotechnol 28(6):344–348. Google Scholar
  70. 70.
    Sicart R, Collin MP, Reymond JL (2007) Fluorogenic substrates for lipases, esterases, and acylases using a TIM-mechanism for signal release. Biotechnol J 2(2):221–231. Google Scholar
  71. 71.
    Lopes DB, Fraga LP, Fleuri LF, Macedo GA (2011) Lipase and esterase: to what extent can this classification be applied accurately? Ciência e Tecnol Aliment 31(3):603–613. Google Scholar
  72. 72.
    Fonzi WA, Sypherd PS (1986) Trichodermin esterase activity and trichodermin resistance in Mucor racemosus. Antimicrob Agents Chemother 29(4):570–575. Google Scholar
  73. 73.
    Moskowitz GJ, Shen T, West IR, Cassaigne R, Feldman LI (1977) Properties of the esterase produced by Mucor miehei to develop flavor in dairy products. J Dairy Sci 60(8):1260–1265. Google Scholar
  74. 74.
    Lopez-Lopez O, Cerdan M, Siso M (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15(5):445–455. Google Scholar
  75. 75.
    Alves MH, Campos-Takaki GM, Figueiredo Porto AL, Milanez AI (2002) Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Braz J Microbiol 33(4):325–330. Google Scholar
  76. 76.
    Rajesh EM, Arthe R, Rajendran R, Balakumar C, Pradeepa N, Anitha S. Investigation of lipase production by Trichoderma Reesei and optimization of production parameters 2010; 9(7):1177–1189Google Scholar
  77. 77.
    Lima MLSO, Chaves MRB, do Nascimento RMC, Gonçalves CCS. Marsaioli AJ. Simultaneous multienzymatic screening with fluorogenic probes. J. Braz. Chem. Soc.2018; 29( 5), 1149–1156.
  78. 78.
    Byun, Y, Kim, YT. Utilization of Bioplastics for Food Packaging Industry. [s.l.] Elsevier Ltd, 2013Google Scholar
  79. 79.
    Mueller RJ (2006) Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem 41(10):2124–2128. Google Scholar
  80. 80.
    Reddy AS, Reddy SM (1983) Lipase activity of two seed-borne fungi of sesamum (Sesamum indicum Linn.). Folia Microbiol (Praha) 28(6):463–466. Google Scholar
  81. 81.
    Yoshida S, Hiraga K, Takehana T, et al. Response to comment on “A bacterium that degrades and assimilates poly(ethylene terephthalate).” Science (80- ). 2016;353(6301):759–759.
  82. 82.
    Nowak B, Pajak J, Drozd-Bratkowicz M, Rymarz G (2011) Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions. Int Biodeterior Biodegrad 65(6):757–767. Google Scholar
  83. 83.
    Watanabe T, Ohtake Y, Asabe H, Murakami N, Furukawa M (2009) Biodegradability and degrading microbes of low-density polyethylene. J Appl Polym Sci 111:551–559. Google Scholar
  84. 84.
    Volke-Seplveda T, Saucedo-Castaeda G, Gutirrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci 83(2):305–314. Google Scholar
  85. 85.
    Sen K, Pakshirajan K, Santra SB. Modelling the biomass growth and enzyme secretion by the white rot fungus Phanerochaete chrysosporium in presence of a toxic pollutant. J Environ Prot (Irvine, Calif). 2012;3(January):114–119.
  86. 86.
    Sepperumal U, Markandan M, Palraja I (2013) Micromorphological and chemical changes during biodegradation of polyethylene terephthalate ( PET ) by Penicillium sp. J Microbiol Biotechnol Res 3(4):47–53Google Scholar
  87. 87.
    Coates J. Interpretation of infrared spectra, A practical approach Encycl Anal Chem 2006:1–23.
  88. 88.
    Al-Azzawi F. Degradation studies on recycled Polyethylene terephthalate 2015. London Metropolitan University. Accessed 15 may 2018
  89. 89.
    Ioakeimidis C, Fotopoulou KN, Karapanagioti HK, Geraga M, Zeri C, Papathanassiou E, Galgani F, Papatheodorou G (2016) The degradation potential of PET bottles in the marine environment: an ATR-FTIR based approach. Sci Rep 6(October 2015):1–8. Google Scholar
  90. 90.
    Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, el Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci 201718804:E4350–E4357. Google Scholar
  91. 91.
    Ibrahim IN, Maraqa A, Hameed KM, Saadoun IM, Maswadeh HM, Nakajima-kambe T. Polyester-polyurethane Biodegradation by Alternaria solani , isolated from Northern Jordan.Adv Environ Biol 2009;3(2):162–170Google Scholar
  92. 92.
    Kumari G, Tiwari A, Yadav M. LDPE-biodegradation using microbial consortium by the incorporation of cobalt ferrite nanoparticle as the enhancer for biodegradation. Int J Adv Eng Res Dev Sci J Impact Factor (SJIF. 2017;4(6):4–72Google Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Lusiane Malafatti-Picca
    • 1
    Email author
  • Michel Ricardo de Barros Chaves
    • 2
  • Aline Machado de Castro
    • 3
  • Érika Valoni
    • 3
  • Valéria Maia de Oliveira
    • 4
  • Anita Jocelyne Marsaioli
    • 2
  • Dejanira de Franceschi de Angelis
    • 5
  • Derlene Attili-Angelis
    • 1
    • 4
    • 5
  1. 1.Environmental Studies Center, UNESPSão Paulo State UniversityRio ClaroBrazil
  2. 2.Institute of ChemistryState University of CampinasCampinasBrazil
  3. 3.Biotechnology Department, R&D CenterPETROBRASRio de JaneiroBrazil
  4. 4.Division of Microbial ResourcesCPQBA - State University of CampinasPaulíniaBrazil
  5. 5.Department of Biochemistry and Microbiology, UNESPSão Paulo State UniversityRio ClaroBrazil

Personalised recommendations