Advertisement

Classification of the inoculant strain of cowpea UFLA03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici)

  • Elaine Martins da Costa
  • Teotonio Soares de Carvalho
  • Amanda Azarias Guimarães
  • Aniele Carolina Ribas Leão
  • Leonardo Magalhães Cruz
  • Valter Antonio de Baura
  • Liesbeth Lebbe
  • Anne Willems
  • Fatima Maria de Souza MoreiraEmail author
Bacterial, Fungal and Virus Molecular Biology - Research Paper

Abstract

Cowpea (Vigna unguiculata L.) is a legume species that considerably benefits from inoculation with nitrogen fixing bacteria of the genus Bradyrhizobium. One of the strains recommended for inoculation in cowpea in Brazil is UFLA03-84 (Bradyrhizobium sp.). The aim of our study was to define the taxonomic position of the UFLA03-84 strain and of two other strains of Bradyrhizobium (UFLA03-144 and INPA237B), all belonging to the same phylogenetic group and isolated from soils of the Brazilian Amazon. Multilocus sequence analysis (MLSA) of the housekeeping genes atpD, gyrB, recA, and rpoB grouped (with similarity higher than 99%) the three strains with Bradyrhizobium viridifuturi SEMIA 690T. The analyses of average nucleotide identity and digital DNA–DNA hybridization supported classification of the group as Bradyrhizobium viridifuturi. The three strains exhibited similar behavior in relation to the most of the phenotypic characteristics evaluated. However, some characteristics exhibited variation, indicating phenotypic diversity within the species. Phylogenetic analysis of the nodC and nifH genes showed that the three strains are members of the same symbiovar (tropici) that contains type strains of Bradyrhizobium species coming from tropical soils (SEMIA 690TB. viridifuturi, CNPSo 1112TB. tropiciagri, CNPSo 2833TB. embrapense, and B. brasilense UFLA03-321T).

Keywords

Bradyrhizobium Vigna unguiculata L. Housekeeping genes Average nucleotide identity Genome 

Notes

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 431504/2016-4, 162976/2013-5, 304527/2016-5), Fundação de Amparo e Pesquisa de Minas Gerais (Fapemig) (PACCSS/PPGCS-2009-2012), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Processes: 99999.002753/2015-04, PROEX 590-2014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

42770_2019_45_Fig5_ESM.png (430 kb)
Fig. S1

Low Resolution Image (PNG 430 kb)

42770_2019_45_MOESM1_ESM.tif (838 kb)
High Resolution Image (TIF 837 kb)

References

  1. 1.
    Guimarães AA, Jaramillo PMD, Nóbrega RSA, Florentino LA, Silva KB, Moreira FMS (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78(18):6726–6733Google Scholar
  2. 2.
    Silva FV, Simões-Araújo JL, Silva Júnior JP, Xavier GR, Rumjanek NG (2012) Genetic diversity of rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant. Braz J Microbiol 43(2):682–691Google Scholar
  3. 3.
    Jaramillo PMD, Guimarães AA, Florentino LA, Silva KB, Nóbrega RSA, Moreira FMS (2013) Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems. Sci Agric 70(6):397–404Google Scholar
  4. 4.
    Grönemeyer JL, Kulkarni A, Berkelmann D, Hurek T, Reinhold-Hurek B (2014) Rhizobia indigenous to the Okavango Region in sub-Saharan Africa: diversity, adaptations, and host specificity. Appl Environ Microbiol 80(23):7244–7257Google Scholar
  5. 5.
    Rufini M, Silva MAP, Ferreira PAA, Cassetari AS, Soares BL, Andrade MJB, Moreira FMS (2014) Symbiotic efficiency and identification of rhizobia that nodulate cowpea in a Rhodic Eutrudox. Biol Fertil Soils 50(1):115–122Google Scholar
  6. 6.
    Brasil. Ministério da Agricultura Pecuária e Abastecimento. Instrução normativa n° 13 de 24 de março de 2011. Available at: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf/view. Accessed 07 Jan 2018
  7. 7.
    Soares ALL, Pereira JPAR, Ferreira PAA, Vale HMM, Lima AS, Andrade MJB, Moreira FMS (2006) Agronomic efficiency of selected rhizobia strains and diversity of native nodulating populations in Perdões (MG - Brazil). II – beans. Rev Bras Cienc Solo 30(5):795–802Google Scholar
  8. 8.
    Costa EM, Nóbrega RSA, Martins LV, Amaral FHC, Moreira FMS (2011) Yield and nodulation of Vigna unguiculata (L.) Walp. inoculated with rhizobia strains in Bom Jesus, PI. Rev Ciênc Agron 42(1):1–7Google Scholar
  9. 9.
    Ferreira LVM, Nobrega RSA, Nobrega JCA, Aguiar FL, Moreira FMS, Pacheco LP (2013) Biological nitrogen fixation in production of Vigna unguiculata (L.) Walp. family farming in Piauí, Brazil. J Agric Sci 5(4):153–160Google Scholar
  10. 10.
    Marinho RCN, Ferreira LVM, Silva AF, Martins LMV, Nóbrega RSA, Fernandes-Júnior PI (2017) Symbiotic and agronomic efficiency of new cowpea rhizobia from Brazilian Semi-Arid. Bragantia 76(2):273–281Google Scholar
  11. 11.
    Guimarães AA, Florentino LA, Almeida KA, Lebbe L, Silva KB, Willems A, Moreira FMS (2015) High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst Appl Microbiol 38(6):433–441Google Scholar
  12. 12.
    Leite J, Passos SR, Simões-Araújo JL, Rumjanek NG, Xavier GR, Zilli JE (2017) Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Braz J Microbiol 49(4):703–713Google Scholar
  13. 13.
    Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P, de Vos P, Gillis M (2001) DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51(4):1315–1322Google Scholar
  14. 14.
    Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55(2):569–575Google Scholar
  15. 15.
    Durán D, Rey L, Navarro A, Busquets A, Imperial J, Ruiz-Argüeso T (2014) Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 37(5):336–341Google Scholar
  16. 16.
    Ribeiro PRA, Santos JV, Costa EM, Lebbe L, Louzada MO, Guimarães AA, Assis ES, Willems A, Moreira FMS (2015) Symbiotic efficiency and genetic diversity of soybean bradyrhizobia in Brazilian soils. Agric Ecosyst Environ 212:85–93Google Scholar
  17. 17.
    Ramírez-Bahena M, Flores-Félix JD, Chahboune R, Toro M, Velázquez E, Peix A (2016) Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 39(6):378–383Google Scholar
  18. 18.
    Costa EM, Guimarães AA, Vicentin RP, Ribeiro PRA, Leão ACR, Balsanelli E, Lebbe L, Aerts M, Willems A, Moreira FMS (2017) Bradyrhizobium brasilense sp. nov., a symbiotic nitrogen fixing bacterium isolated from Brazilian tropical soils. Arch Microbiol 199(8):1211–1221Google Scholar
  19. 19.
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464Google Scholar
  20. 20.
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60Google Scholar
  21. 21.
    Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91Google Scholar
  22. 22.
    Auch AF, Von Jan M, Klenk HP, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134Google Scholar
  23. 23.
    Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106(45):19126–19131Google Scholar
  24. 24.
    González-Castillo A, Enciso-Ibarrra J, Bolán-Mejia MC, Balboa S, Lasa A, Romalde JL, Cabanillas-Beltrán H, Gomez-Gil B (2015) Vibrio mexicanus sp. nov., isolated from a cultured oyster Crassostrea corteziensis. Antonie Van Leeuwenhoek 108(2):355–364Google Scholar
  25. 25.
    Fred EB, Waksman SA (1928) Laboratory manual of general microbiology with special reference to the microorganisms of the soil. McGraw-Hill Book 145p, New YorkGoogle Scholar
  26. 26.
    Vincent JM (1970) A manual for the practical study of root nodule bacteria. International Biological Programme, London 164 p. (IBP Handbook, 15)Google Scholar
  27. 27.
    Niemann S, Puehler A, Tichy HV, Simon R, Selbitshka W (1997) Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82(4):477–484Google Scholar
  28. 28.
    Akaike H (1974) A new look at the statistical model identification. IEE Trans Automat Contr 19:716–723Google Scholar
  29. 29.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729Google Scholar
  30. 30.
    Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54(1):1–11Google Scholar
  31. 31.
    De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A (2011) Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 43(12):2384–2396Google Scholar
  32. 32.
    Gaby JC, Buckley DH (2012) A Comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 7(7):e42149Google Scholar
  33. 33.
    Helene LC, Gomes DF, Delamuta JR, Ribeiro RA, Souza RC, Almeida LG, Vasconcelos AT, Hungria M (2015) Genome Sequence of Bradyrhizobium viridifuturi Strain SEMIA 690T, a Nitrogen-Fixing Symbiont of Centrosema pubescens. Genome Announc 3(6):e01481–15Google Scholar
  34. 34.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin, M, Kulikov AS, Lesin VM, Nikolenko  SI, Pham S, Prjibelski  AD, Pyshkin  AV, Sirotkin  AV, Vyahhi,  N, Tesler  G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477Google Scholar
  35. 35.
    Guizelini D, Raittz RT, Cruz LM, Souza EM, Steffens MBR, Pedrosa FO (2016) GFinisher: a new strategy to refine and finish bacterial genome assemblies. Sci Rep 6:34963Google Scholar
  36. 36.
    Florentino LA, Sousa PM, Silva JS, Silva KB, Moreira FMS (2010) Diversity and efficiency of Bradyrhizobium strains isolated from soil samples collected from around Sesbania virgata roots using cowpea as trap species. Rev Bras Cienc Solo 34(4):1113–1123Google Scholar
  37. 37.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Peer J 25(7):1043–1055Google Scholar
  38. 38.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75Google Scholar
  39. 39.
    Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Sui XH, Chen WX (2012) Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 63(2):616–624Google Scholar
  40. 40.
    Orata FD, Xu Y, Gladney LM, Rishishwar L, Case RJ, Boucher Y, Jordan IK, Tarr CL (2016) Characterization of clinical and environmental isolates of Vibrio cidicii sp. nov., a close relative of Vibrio navarrensis. Int J Syst Evol Microbiol 66(10):4148–4415Google Scholar
  41. 41.
    Rogel MA, Ormeño-Orrillo E, Martínez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34(2):96–104Google Scholar
  42. 42.
    Costa EM, Ribeiro PRA, Lima W, Farias TP, Moreira FMS (2017) Lima bean nodulates efficiently with Bradyrhizobium strains isolated from diverse legume species. Symbiosis 71(2):1–9Google Scholar
  43. 43.
    Costa EM (2016) New Bradyrhizobium species from soils of different Brazilian regions: taxonomy and symbiotic efficiency. Lavras, Brazil, 220p. (PhD. Thesis. Universidade Federal de Lavras. UFLA)Google Scholar
  44. 44.
    Barbé TC, Xavier GR, O'Hara G, Ardley JK, Rumjanek NG, Willems A, Zilli JE (2014) Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazon rainforest soils. Int J Syst Evol Microbiol 64(7):2358–2363Google Scholar
  45. 45.
    Ormeño-Orrillo E, Martínez-Romero E (2013) Phenotypic tests in Rhizobium species description: an opinion and (a sympatric speciation) hypothesis. Syst Appl Microbiol 36(3):145–147Google Scholar
  46. 46.
    Helene LCF, Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Martínez-Romero E, Hungria M (2015) Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 65(12):4441–4448Google Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Elaine Martins da Costa
    • 1
    • 2
  • Teotonio Soares de Carvalho
    • 1
  • Amanda Azarias Guimarães
    • 1
  • Aniele Carolina Ribas Leão
    • 3
  • Leonardo Magalhães Cruz
    • 3
  • Valter Antonio de Baura
    • 3
  • Liesbeth Lebbe
    • 4
  • Anne Willems
    • 4
  • Fatima Maria de Souza Moreira
    • 1
    Email author
  1. 1.Departamento de Ciência do SoloUniversidade Federal de LavrasLavrasBrazil
  2. 2.Universidade Federal do PiauíBom JesusBrazil
  3. 3.Departamento de Bioquímica e Biologia MolecularUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Department of Biochemistry and MicrobiologyGhent UniversityGhentBelgium

Personalised recommendations