Brazilian Journal of Microbiology

, Volume 50, Issue 1, pp 133–137 | Cite as

The occurrence of polyomaviruses WUPyV and KIPyV among patients with severe respiratory infections

  • Débora Bellini CaldeiraEmail author
  • Luciano Kleber de Souza Luna
  • Aripuana Watanabe
  • Ana Helena Perosa
  • Celso Granato
  • Nancy Bellei
Clinical Microbiology - Research Paper


In 2007, the new polyomaviruses WUPyV and KIPyV were identified in patients with acute respiratory infections. The aim of this study was to investigate these viruses in hospitalized patients with severe acute respiratory infection (SARI). A retrospective study was conducted with 251 patients, from April 2009 to November 2010, using nasopharyngeal aspirates, naso- and oropharyngeal swab samples from hospitalized patients (children < 12 years and adults) who had SARI within 7 days of the onset of symptoms, including fever (> 38.8 °C), dyspnea, and cough. Clinical and epidemiological information was obtained through standardized questionnaire. Enrolled patients were initially suspected to have influenza A(H1N1)pdm09 infections. WUPyV and KIPyV were detected by real-time PCR. Samples were also tested for influenza A and B viruses, human respiratory syncytial virus, rhinovirus, metapneumovirus, coronavirus, adenovirus, and parainfluenza viruses. WUPyV and KIPyV were detected in 6.77% (4.78% and 1.99%, respectively) of hospitalized patients with SARI. All samples from children showed coinfections (rhinovirus was the most commonly detected). Six adults had polyomavirus infection and four (1.6%) had monoinfection. Of them, 3 reported comorbidities including immunosuppression and 1 patient had worse outcome, requiring ICU admission. These preliminary data may suggest a possible role of polyomaviruses in SARI among immunocompromised adult patients.


Severe acute respiratory infection Polyomaviruses WUPyV KIPyV Real-time PCR 


Funding information

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP [grant number 2016/09279-6.]. DBC e LKSL são bolsistas da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil.

Compliance with ethical standards

This study was approved by the Ethics Committee of Sao Paulo Federal University (CEP 0090/2016).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Allander T, Andreasson K, Gupta S et al (2007) Identification of a third human polyomavirus. J Virol 81(8):4130–4136. CrossRefGoogle Scholar
  2. 2.
    Gaynor AM, Nissen MD, Whiley DM et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3(5):e64. CrossRefGoogle Scholar
  3. 3.
    Moens U, Calvignac-Spencer S, Lauber C et al (2017) ICTV virus taxonomy profile: polyomaviridae. J Gen Virol 98(6):1159–1160. Google Scholar
  4. 4.
    Teramoto S, Kaiho M, Takano Y et al (2011) Detection of KI polyomavirus and WU polyomavirus DNA by real-time polymerase chain reaction in nasopharyngeal swabs and in normal lung and lung adenocarcinoma tissues. Microbiol Immunol 55(7):525–530. CrossRefGoogle Scholar
  5. 5.
    Ren L, Gonzalez R, Xie Z et al (2008) WU and KI polyomavirus present in the respiratory tract of children, but not in immunocompetent adults. J Clin Virol 43(3):330–333. CrossRefGoogle Scholar
  6. 6.
    Mourez T, Bergeron A, Ribaud P et al (2009) Polyomaviruses KI and WU in immunocompromised patients with respiratory disease. Emerg Infect Dis 15(1):107–109. CrossRefGoogle Scholar
  7. 7.
    Babakir-Mina M, Ciccozzi M, Dimonte S et al (2008) Identification of the novel KI polyomavirus in the respiratory tract of an Italian patient. J Med Virol 80(11):2012–2014. CrossRefGoogle Scholar
  8. 8.
    Lin S-X, Wang W, Guo W et al (2017) A molecular epidemiological study of KI polyomavirus and WU polyomavirus in children with acute respiratory infection in Tianjin, China. Chinese J Contemp Pediatr 19(7):763–769. Google Scholar
  9. 9.
    Han TH, Chung JY, Koo JW, Kim SW, Hwang ES (2007) WU polyomavirus in children with acute lower respiratory tract infections, South Korea. Emerg Infect Dis 13(11):1766–1768. CrossRefGoogle Scholar
  10. 10.
    Wattier RL, Vázquez M, Weibel C et al (2008) Role of human polyomaviruses in respiratory tract disease in young children. Emerg Infect Dis 14(11):1766–1768. CrossRefGoogle Scholar
  11. 11.
    Hansen-Estruch C, Coleman KK, Thoon KC, Low JG, Anderson BD, Gray GC (2018) Prevalence of respiratory polyomaviruses among pediatric patients with respiratory symptoms in Singapore. Front Pediatr ;6.
  12. 12.
    Rao S, Lucero MG, Nohynek H et al (2016) WU and KI polyomavirus infections in Filipino children with lower respiratory tract disease. J Clin Virol 82:112–118. CrossRefGoogle Scholar
  13. 13.
    Gozalo-Margüello M, Agüero-Balbín J, Martínez-Martínez L (2015) WU and KI polyomavirus prevalence in invasive respiratory samples from transplant recipients in Cantabria, Spain. Transplant Proc 47(1):67–69. CrossRefGoogle Scholar
  14. 14.
    Essa S, Owayed A, Altawalah H, Khadadah M, Behbehani N, Al-Nakib W (2015) The prevalence of human bocavirus, human coronavirus-NL63, human metapneumovirus, human polyomavirus KI and WU in respiratory tract infections in Kuwait. Med Princ Pract 24(4):382–387. CrossRefGoogle Scholar
  15. 15.
    Iaria M, Caccuri F, Apostoli P et al (2015) Detection of KI WU and Merkel cell polyomavirus in respiratory tract of cystic fibrosis patients. Clin Microbiol Infect 21(6):603.e9–603.e15. CrossRefGoogle Scholar
  16. 16.
    Bergallo M, Terlizzi ME, Astegiano S et al (2009) Real time PCR TaqMan assays for detection of polyomaviruses KIV and WUV in clinical samples. J Virol Methods 162(1–2):69–74. CrossRefGoogle Scholar
  17. 17.
    Sadeghi M, Wang Y, Ramqvist T et al (2017) Multiplex detection in tonsillar tissue of all known human polyomaviruses. BMC Infect Dis 17(1):409. CrossRefGoogle Scholar
  18. 18.
    Comar M, Zanotta N, Rossi T, Pelos G, D’Agaro P (2011) Secondary lymphoid tissue as an important site for WU polyomavirus infection in immunocompetent children. J Med Virol 83(8):1446–1450. CrossRefGoogle Scholar
  19. 19.
    Herberhold S, Hellmich M, Panning M et al (2017) Human polyomavirus and human papillomavirus prevalence and viral load in non-malignant tonsillar tissue and tonsillar carcinoma. Med Microbiol Immunol 206(2):93–103. CrossRefGoogle Scholar
  20. 20.
    Bialasiewicz S, Whiley DM, Lambert SB, Nissen MD, Sloots TP (2009) Detection of BK, JC, WU, or KI polyomaviruses in faecal, urine, blood, cerebrospinal fluid and respiratory samples. J Clin Virol 45(3):249–254. CrossRefGoogle Scholar
  21. 21.
    Sloots TP, Whiley DM, Lambert SB, Nissen MD (2008) Emerging respiratory agents: new viruses for old diseases? J Clin Virol 42(3):233–243. CrossRefGoogle Scholar
  22. 22.
    Robaina TF, Mendes GS, Benati FJ et al (2013) Shedding of polyomavirus in the saliva of immunocompetent individuals. J Med Virol 85(1):144–148. CrossRefGoogle Scholar
  23. 23.
    Robaina TF, Mendes GS, Benati FJ et al (2013) Polyomavirus in saliva of HIV-infected children, Brazil. Emerg Infect Dis 19(1):155–157. CrossRefGoogle Scholar
  24. 24.
    MS. Protocolo para o Enfrentamento à Pandemia de Influenza Pandêmica (H1N1) 2009: Ações da Atenção Primária à Saúde. Epidemiológica D de V, ed. 2010:38.
  25. 25.
    CDC. CDC Protocol of realtime RT-PCR for influenza A (H1N1). World Health Organization. Published 2009
  26. 26.
    Perosa AH, Watanabe AS, Guatura SB, Silva ER, Granato C, Bellei N (2013) Comparison of the direct fluorescence assay and real-time polymerase chain reaction for the detection of influenza virus A and B in immunocompromised patients. Clin (Sao Paulo) 68(9):1206–1209. CrossRefGoogle Scholar
  27. 27.
    Fry AM, Chittaganpitch M, Baggett HC et al (2010) The burden of hospitalized lower respiratory tract infection due to respiratory syncytial virus in rural Thailand. PLoS One 5(11):e15098. CrossRefGoogle Scholar
  28. 28.
    Savolainen C, Mulders MN, Hovi T (2002) Phylogenetic analysis of rhinovirus isolates collected during successive epidemic seasons. Virus Res 85(1):41–46 CrossRefGoogle Scholar
  29. 29.
    Falsey AR, Erdman D, Anderson LJ, Walsh EE (2003) Human metapneumovirus infections in young and elderly adults. J Infect Dis 187(5):785–790. CrossRefGoogle Scholar
  30. 30.
    Dare RK, Fry AM, Chittaganpitch M, Sawanpanyalert P, Olsen SJ, Erdman DD (2007) Human coronavirus infections in rural Thailand: a comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J Infect Dis 196(9):1321–1328. CrossRefGoogle Scholar
  31. 31.
    Heim A, Ebnet C, Harste G, Pring-Akerblom P (2003) Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol 70(2):228–239. CrossRefGoogle Scholar
  32. 32.
    Puerari D, Camargo C, Gratura S, Watanabe AS, Granato C, Bellei NC (2015) Application of molecular assay for adenovirus detection among different pediatric patients. Rev Paul Pediatr 33(2):136–141. CrossRefGoogle Scholar
  33. 33.
    Kim C, Ahmed JA, Eidex RB et al (2011) Comparison of nasopharyngeal and oropharyngeal swabs for the diagnosis of eight respiratory viruses by real-time reverse transcription-PCR assays. PLoS One 6(6):e21610. CrossRefGoogle Scholar
  34. 34.
    van de Pol AC, van Loon AM, Wolfs TF et al (2007) Increased detection of respiratory syncytial virus, influenza viruses, parainfluenza viruses, and adenoviruses with real-time PCR in samples from patients with respiratory symptoms. J Clin Microbiol 45(7):2260–2262. CrossRefGoogle Scholar
  35. 35.
    Lindau C, Tiveljung-Lindell A, Goh S, Ramqvist T, Allander T (2009) A single-tube, real-time PCR assay for detection of the two newly characterized human KI and WU polyomaviruses. J Clin Virol 44(1):24–26. CrossRefGoogle Scholar
  36. 36.
    Abed Y, Wang D, Boivin G (2007) WU polyomavirus in children, Canada. Emerg Infect Dis 13(12):1939–1941. CrossRefGoogle Scholar
  37. 37.
    Norja P, Ubillos I, Templeton K, Simmonds P (2007) No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease. J Clin Virol 40(4):307–311. CrossRefGoogle Scholar
  38. 38.
    Bialasiewicz S, Whiley DM, Lambert SB et al (2008) Presence of the newly discovered human polyomaviruses KI and WU in Australian patients with acute respiratory tract infection. J Clin Virol 41(2):63–68. CrossRefGoogle Scholar
  39. 39.
    Le BM, Demertzis LM, Wu G et al (2007) Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg Infect Dis 13(12):1936–1938. CrossRefGoogle Scholar
  40. 40.
    Gossai A, Waterboer T, Nelson HH et al (2016) Seroepidemiology of human polyomaviruses in a US population. Am J Epidemiol 183(1):61–69. CrossRefGoogle Scholar
  41. 41.
    Abedi Kiasari B, Vallely PJ, Corless CE, Al-Hammadi M, Klapper PE (2008) Age-related pattern of KI and WU polyomavirus infection. J Clin Virol 43(1):123–125. CrossRefGoogle Scholar
  42. 42.
    White MK, Gordon J, Khalili K (2013) The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. Hobman TC, ed. PLoS Pathog ;9(3):e1003206.

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Débora Bellini Caldeira
    • 1
    Email author
  • Luciano Kleber de Souza Luna
    • 1
  • Aripuana Watanabe
    • 2
  • Ana Helena Perosa
    • 1
  • Celso Granato
    • 1
  • Nancy Bellei
    • 1
  1. 1.Medicine Department, Clinical Virology Laboratory, Infectious Diseases UnitSao Paulo Federal UniversitySao PauloBrazil
  2. 2.Department of parasitology, microbiology and immunology, Biologic Sciences InstituteFederal University of Juiz de ForaMinas GeraisBrazil

Personalised recommendations