Advertisement

Sustainable recovery of protein-rich liquor from shrimp farming waste by lactic acid fermentation for application in tilapia feed

  • J. C. M. Ximenes
  • D. C. Hissa
  • L. H. Ribeiro
  • M. V. P. Rocha
  • E. G. Oliveira
  • V. M. M. MeloEmail author
Environmental Microbiology - Research Paper
  • 2 Downloads

Abstract

The biotransformation of shrimp head waste into ingredients for Nile tilapia (Oreochromis niloticus) post-larvae (PLs) diet formulations was evaluated herein. A novel consortium of lactic acid bacteria, comprising the strains Lactobacillus futsaii LAB06 and L. plantarum LAB14, selected based on kinetic growth parameters, was applied in the fermentation of shrimp head waste. After 48 h, the highest lactic acid production was 100 g L−1, allowing for maximum recovery of chitin and protein-rich liquor. The liquor was added to commercial powdered fish feed at 15, 30, and 45% (w/w) and offered to Nile tilapia PL during 28 days. The inclusion of 30% provided the best results for Nile tilapia PL survival, weight and length gains, specific growth rate, and biomass, proving that the fermented liquor can be incorporated, leading to economic benefits and contributing to the reduction of environmental pollution caused by the improper disposal of shrimp waste.

Keywords

Shrimp waste Fish feed Nile tilapia Lactic acid fermentation Recycle 

Notes

Funding information

We thank the CNPq (National Council for Scientific and Technological Development) for research grant and FUNCAP (Research Support Foundation of Ceará State) for doctoral scholarship to JCX.

References

  1. 1.
    Nunes AJP, Rocha IP (2015) Overview and latest developments in shrimp and tilapia aquaculture in Northeast Brazil. World Aquac:10–15Google Scholar
  2. 2.
    Ferreira JG, Falconer L, Kittiwanich J, Ross L, Saurel C, Wellman K, Zhu CB, Suvanachai P (2015) Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquaculture 447:23–36CrossRefGoogle Scholar
  3. 3.
    Koch JF, Rawles SD, Webster CD, Cummins V, Kobayashi Y, Thompson KR, Gannam AL, Twibell RG, Hyde NM (2015) Optimizing fish meal-free commercial diets for Nile Tilapia, Oreochromis niloticus. Aquaculture 452:357–366CrossRefGoogle Scholar
  4. 4.
    Thongprajukaew K, Rodjaroen S, Tantikitti C, Kovitvadhi U (2015) Physicochemical modifications of dietary palm kernel meal affect growth and feed utilization of Nile tilapia (Oreochromis niloticus). Anim Feed Sci Technol 202:90–99CrossRefGoogle Scholar
  5. 5.
    Mbahinzireki GB, Dabrowski K, Lee KJ, El-Saidy D, Wisner ER (2001) Growth, feed utilization and body composition of tilapia (Oreochromis sp.) fed with cottonseed meal-based diets in a recirculating system. Aquac Nutr 7(3):189–200CrossRefGoogle Scholar
  6. 6.
    Fasakin EA, Serwata RD, Davies SJ (2005) Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia (Oreochromis niloticus x Oreochromis mossambicus) diets. Aquaculture 249:329–338CrossRefGoogle Scholar
  7. 7.
    Cavalheiro JMO, Souza EO, Bora PS (2007) Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed. Bioresour Technol 98:602–606CrossRefGoogle Scholar
  8. 8.
    Cahúa TB, Santos SD, Mendes A, Córdula CR, Chavantes SF, Carvalho LB Jr, Nader HB, Bezerra RS (2012) Recovery of protein, chitin, carotenoids and glycosaminoglycans fron Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochem 47:570–577CrossRefGoogle Scholar
  9. 9.
    Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174CrossRefGoogle Scholar
  10. 10.
    Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902CrossRefGoogle Scholar
  11. 11.
    Bhaskar N, Suresh PV, Sakhare PZ, Sachindra NM (2007) Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzym Microb Technol 40(5):1427–1434CrossRefGoogle Scholar
  12. 12.
    Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37:1359–1366CrossRefGoogle Scholar
  13. 13.
    AOAC (Association of Official Analytical Chemists) (2003) Official methods of analysis of the association of official’s analytical Chemists, 17th edn. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  14. 14.
    Warner SAJ (2013) Genomic DNA isolation and lambda library construction. In: Foster GD, Twell D (eds) Plant gene isolation: principles and practice. John Wiley & Sons Inc., West Sussex, pp 51–73Google Scholar
  15. 15.
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  16. 16.
    Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K, Cleenwerck I, Vancanneyt M, Swings J (2007) Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57(12):2777–2789CrossRefGoogle Scholar
  17. 17.
    Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185CrossRefGoogle Scholar
  18. 18.
    Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202CrossRefGoogle Scholar
  19. 19.
    DeMan JC, Rogosa M, Sharpe ME (1960) Medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135CrossRefGoogle Scholar
  20. 20.
    Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publication, OxfordGoogle Scholar
  21. 21.
    Leal ALG, Castro PF, Lima JPV, Correia ES, Bezerra RS (2010) Use of shrimp protein hydrolysate in Nile tilapia (Oreochromis niloticus, L.) feeds. Aquac Int 18:635–646CrossRefGoogle Scholar
  22. 22.
    Rao MS, Stevens WF (2005) Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan. J Chem Technol Biotechnol 80(9):1080–1087CrossRefGoogle Scholar
  23. 23.
    Brazil (2008) Brazilian Federal Law on Animal Experimentation (Law 11794/2008), BrasíliaGoogle Scholar
  24. 24.
    Boyd CE (1984) Water quality. In: Warm water fishponds. Alabama Agriculture Experiment Station, Auburn University, AuburnGoogle Scholar
  25. 25.
    Chao SH, Kudo Y, Tsai YC, Watanabe K (2012) Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products. Int J Syst Evol Microbiol 62(3):489–494CrossRefGoogle Scholar
  26. 26.
    De Bruyne K, Franz CMAP, Vancanneyt M, Schillinger U, Mozzi F, de Valdez GF, De Vuyst L, Vandamme P (2008) Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int J Syst Evol Microbiol 58(12):2909–2916CrossRefGoogle Scholar
  27. 27.
    Shirai K, Guerrero I, Huerta S, Saucedo G, Castillo A, Obdulia Gonzalez R, Hall GM (2001) Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzym Microb Technol 28:446–452CrossRefGoogle Scholar
  28. 28.
    Pacheco N, Gimeno M, Eduardo B, David L, Shirai KFD, Lyon D, Lyon B (2001) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12:3285–3290CrossRefGoogle Scholar
  29. 29.
    Oliveira R, Sousdaleff M, Lima M, Lima H (2009) Produção fermentativa de ácido lático a partir do melaço da cana-de-açúcar por Lactobacillus casei. Braz J Food Technol 12:34–40CrossRefGoogle Scholar
  30. 30.
    Litchfield JH (2009) Lactic acid, microbially produced. In: Schaechter Mosel O (ed) Encyclopedia of microbiology. Academic Press, Oxford, pp 362–372CrossRefGoogle Scholar
  31. 31.
    Liu P, Liu S, Guo N, Mao X, Lin H, Xue C, Wei D (2014) Cofermentation of Bacillus licheniformis and Gluconobacter oxydans for chitin extraction from shrimp waste. Biochem Eng J 91:10–15CrossRefGoogle Scholar
  32. 32.
    John RP, Nampoothiri KM, Pandey A (2006) Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. Biotechnol Lett 28:1823–1826CrossRefGoogle Scholar
  33. 33.
    Duan S, Zhang Y, Lu T, Cao D, Chen J (2011) Shrimp waste fermentation using symbiotic lactic acid bacteria. Adv Mater Res 196:2156–2163CrossRefGoogle Scholar
  34. 34.
    Forster JRM (1975) Studies on the development of compounded diets for prawns. In: Price KS, Shaw WN, Danberg KS (eds) Proceedings of the first international conference on aquaculture nutrition. Delaware Sea Grant College Program and US/Japan Aquaculture Panel, College of Marine Studies, University of Delaware, Newark, pp 229–248Google Scholar
  35. 35.
    Sachindra NM, Bhaskar N (2008) In-vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresour Technol 99:9013–9016CrossRefGoogle Scholar
  36. 36.
    Joseph JD, Meyers SP (1975) Lipid fatty acid composition of shrimp meals and crustaceans diets. Feedstuffs 47:35–39Google Scholar
  37. 37.
    Toyama GN, Corrente JE, Cyrino JEP (2000) Suplementação de vitamina C em rações para reversão sexual da tilápia do Nilo. Sci Agric 57(2):221–228CrossRefGoogle Scholar
  38. 38.
    Kubitza F (2008) Uma coleção de artigos sobre tilápia. In: Kubtiza F (ed) Panorama da Aquicultura. Southern Ocean Education and Development Project, University of Victoria, Canada, pp 1–89Google Scholar
  39. 39.
    Lunsdedt LM, Leonhardt JH, Dias AL (1997) Alterações morfométricas induzidas pela reversão sexual em tilápia do Nilo, Oreochromis niloticus (Linnaeus, 1757). Unimar 19(2):461–472Google Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • J. C. M. Ximenes
    • 1
    • 2
  • D. C. Hissa
    • 1
  • L. H. Ribeiro
    • 1
  • M. V. P. Rocha
    • 3
  • E. G. Oliveira
    • 4
  • V. M. M. Melo
    • 1
    • 2
    Email author
  1. 1.Laboratório de Ecologia Microbiana e Biotecnologia, Departamento de BiologiaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Rede Nordeste de Biotecnologia (RENORBIO)FortalezaBrazil
  3. 3.Departamento de Engenharia QuímicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Departamento de Engenharia de PescaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations