Brazilian Journal of Microbiology

, Volume 50, Issue 1, pp 263–269 | Cite as

Evaluation of growth and sporulation of a non-toxigenic strain of Clostridioides difficile (Z31) and its shelf viability

  • Carlos Augusto Oliveira Júnior
  • Rodrigo Otávio Silveira SilvaEmail author
  • Diogo Soares Gonçalves Cruz
  • Isadora Honorato Pires
  • Guilherme Guerra Alves
  • Francisco Carlos Faria Lobato
Fungal and Bacterial Physiology - Research Paper


The oral administration of non-toxigenic strains of Clostridioides difficile (NTCD) is currently showing promising results for the prevention of Clostridioides difficile infection (CDI) in humans and animals, and is being considered as a possible commercial product to be used in the near future. The aim of this work was to evaluate five culture media for the growth and sporulation of one NTCD (Z31) and evaluate the viability of a lyophilized spore solution of NTCD Z31 stored at 4 °C or at 25 °C for 2 years. Reinforced clostridial medium (RCM) and brain heart infusion broth (BHI) provided the highest production of NTCD Z31 spores. In the first 6 months of the storage of the lyophilized solution, a reduction in spore count of approximately 0.3 Log10 CFU/mL was observed; however, no further significant reduction in spore count was observed up to 24 months. No difference in spore concentration was found between the two storage temperatures from 6 to 24 months of storage. The present work showed BHI and RCM to be the best choices for the growth and sporulation of NTCD Z31 and suggested that the spores of NTCD Z31 are stable for up to 2 years under both temperature conditions.


Probiotic Culture media Long-term viability Spores 


Funding information

The authors would like to thank PRPq-UFMG, Fapemig, Capes/Proex, and CNPq for providing financial support in this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Natarajan M, Walk ST, Young VB (2013) Aronoff DM. A clinical and epidemiological review of non-toxigenic Clostridium difficile. Anaerobe 22:1–5CrossRefGoogle Scholar
  2. 2.
    Lawson PA, Citron DM, Tyrrell KL (2016) Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40:95–99CrossRefGoogle Scholar
  3. 3.
    Silva ROS, Guedes RMC, Lobato FCF (2013) Clostridium difficile: main features and occurrence in domestic species in Brazil. Cienc Rural 43(1):73–80CrossRefGoogle Scholar
  4. 4.
    Martin JSH, Monaghan TM, Wilcox MH (2016) Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol 13(4):206–216CrossRefGoogle Scholar
  5. 5.
    Songer JG, Anderson MA (2006) Clostridium difficile: an important pathogen of food animals. Anaerobe 12(1):1–4CrossRefGoogle Scholar
  6. 6.
    Moono P, Foster NF, Hampson DJ, Knight DR, Bloomfield LE, Riley TV (2016) Clostridium difficile in production animals and avian species: a review. Foodborne Pathog Dis 13(12):647–655CrossRefGoogle Scholar
  7. 7.
    Silva ROS, Salvarani FM, Cruz Júnior ECC, Pires PS, Santos RLS, Assis RA, Guedes RMC, Lobato FCF (2011) Detection of toxins A/B and isolation of Clostridium difficile from piglets in Brazil. Cienc Rural 41(8):1130–1135Google Scholar
  8. 8.
    Lippke RT, Borowski SM, Marques SMT, Paesi SO, Almeida LL, Moreno AM, Corbellini LG, Barcellos DESN (2011) Matched case-control study evaluating the frequency of the main agents associated with neonatal diarrhea in piglets. Pesqui Vet Bras 31(6):505–510CrossRefGoogle Scholar
  9. 9.
    Cruz EC Jr, Salvarani FM, Silva ROS, Silva MX, Lobato FCF, Guedes RMC (2013) A surveillance of enteropathogens in piglets from birth to seven days of age in Brazil. Pesqui Vet Bras 33(8):963–969CrossRefGoogle Scholar
  10. 10.
    Kim HB, Zhang Q, Sun X, Beamer G, Wang Y, Tzipori S (2014) Beneficial effect of oral tigecycline treatment on Clostridium difficile infection in gnotobiotic piglets. Antimicrob Agents Chemother 58(12):7560–7564CrossRefGoogle Scholar
  11. 11.
    Mizrahi A, Collignon A, Péchiné S (2014) Passive and active immunization strategies against Clostridium difficile infections: state of the art. Anaerobe 30:210–219CrossRefGoogle Scholar
  12. 12.
    Arruda PH, Madson DM, Ramirez A, Rowe EW, Songer JG (2016) Bacterial probiotics as an aid in the control of Clostridium difficile disease in neonatal pigs. Can Vet J 57:183–188Google Scholar
  13. 13.
    Wilson KH, Sheagren JN (1983) Antagonism of toxigenic Clostridium difficile by nontoxigenic C. difficile. J Infect Dis 147(4):733–736CrossRefGoogle Scholar
  14. 14.
    Borriello SP, Barclay FE (1985) Protection of hamsters against Clostridium difficile ileocaecitis by prior colonisation with non-pathogenic strains. J Med Microbiol 19:339–350CrossRefGoogle Scholar
  15. 15.
    Sambol SP, Merrigan MM, Tang JK, Johnson S, Gerding DN (2002) Colonization for the prevention of Clostridium difficile disease in hamsters. J Infect Dis 186:1781–1789CrossRefGoogle Scholar
  16. 16.
    Merrigan MM, Sambol SP, Johnson S, Gerding DN (2009) New approach to the management of Clostridium difficile infection: colonisation with non-toxigenic C. difficile during daily ampicillin or ceftriaxone administration. Int J Antimicrob Agents 33(1):S46–S50CrossRefGoogle Scholar
  17. 17.
    Villano SA, Seiberling M, Tatarowicz W, Monnot-Chase E, Gerding DN (2012) Evaluation of an oral suspension of VP20621, spores of nontoxigenic Clostridium difficile strain M3 in healthy subjects. Antimicrob Agents Chemother 56(10):5224–5229CrossRefGoogle Scholar
  18. 18.
    Nagaro KJ, Phillips ST, Cheknis AK, Sambol SP, Zukowski WE, Johnson S, Gerding DN (2013) Nontoxigenic Clostridium difficile protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile. Antimicrob Agents Chemother 57(11):5266–5270CrossRefGoogle Scholar
  19. 19.
    Gerding DN, Meyer T, Lee C, Cohen SH, Murthy UK, Poirier A, Van Schooneveld TC, Pardi DS, Ramos A, Barron MA, Chen H, Villano S (2015) Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA 313(17):1719–1727CrossRefGoogle Scholar
  20. 20.
    Songer JG, Jones R, Anderson MA, Barbara AJ, Post KW, Trinh HT (2007) Prevention of porcine Clostridium difficile-associated disease by competitive exclusion with nontoxigenic organisms. Vet Microbiol 124:358–361CrossRefGoogle Scholar
  21. 21.
    Pereira FL, Oliveira Júnior CA, Silva ROS, Dorella FA, Carvalho AF, Almeida GMF, Leal CAG, Lobato FCF, Figueiredo HCP (2016) Complete genome sequence of Peptoclostridium difficile strain Z31. Gut Pathog 8:11CrossRefGoogle Scholar
  22. 22.
    Oliveira Júnior CA, Silva ROS, Diniz AN, Pires PS, Lobato FCF, Assis RA (2016) Prevention of Clostridium difficile infection in hamsters using a non-toxigenic strain. Cienc Rural 46(5):853–859CrossRefGoogle Scholar
  23. 23.
    Janezic S, Ocepek M, Zidaric V, Rupnik M (2012) Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol 12:48–55CrossRefGoogle Scholar
  24. 24.
    Silva ROS, Rupnik M, Diniz AN, Vilela EG, Lobato FC (2015) Clostridium difficile ribotypes in humans and animals in Brazil. Mem Inst Oswaldo Cruz 110(8):1062–1065CrossRefGoogle Scholar
  25. 25.
    Zidaric V, Rupnik M (2016) Sporulation properties and antimicrobial susceptibility in endemic and rare Clostridium difficile PCR ribotypes. Anaerobe 39:183–188CrossRefGoogle Scholar
  26. 26.
    Atlas RM (1946) Handbook of microbiological media. 4th ed. CRC Press, MiamiGoogle Scholar
  27. 27.
    Hamouda T, Shih AY, Baker JR (2002) A rapid staining technique for the detection of the initiation of germination of bacterial spores. Lett Appl Microbiol 34(2):86–90CrossRefGoogle Scholar
  28. 28.
    Yang WW, Crow-Willard EN, Ponce A (2009) Production and characterization of pure Clostridium spore suspensions. J Appl Microbiol 106:27–33CrossRefGoogle Scholar
  29. 29.
    Ǻkerlund T, Persson I, Unemo M, Norén T, Svenungsson B, Wullt M, Burman LG (2008) Increased sporulation rate of epidemic Clostridium difficile type 027/NAP1. J Clin Microbiol 46(4):1530–1533CrossRefGoogle Scholar
  30. 30.
    Merrigan M, Venugopal A, Mallozzi M, Roxas B, Viswanathan VK, Johnson S, Gerding DN, Vedantam G (2010) Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 192(19):4904–4911CrossRefGoogle Scholar
  31. 31.
    Burns DA, Minton NP (2011) Sporulation studies in Clostridium difficile. J Microbiol Methods 87:133–138CrossRefGoogle Scholar
  32. 32.
    Hafiz S, Oakley CL (1976) Clostridium difficile: isolation and characteristics. J Med Microbiol 9:129–136CrossRefGoogle Scholar
  33. 33.
    Burns DA, Heap JT, Minton NP (2010) The diverse sporulation characteristics of Clostridium difficile clinical isolates are not associated with type. Anaerobe 16:618–622CrossRefGoogle Scholar
  34. 34.
    Neumann-Schaal M, Hofmann JD, Will SE, Schomburg D (2015) Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitante fermentation product and toxin formation. BMC Microbiol 15:281CrossRefGoogle Scholar
  35. 35.
    Karlsson S, Lindberg A, Norin E, Burman LG, Ǻkerlund T (2000) Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect Immun 68(10):5881–5888CrossRefGoogle Scholar
  36. 36.
    Mattsson DM, Rogers P (1994) Analysis of Tn916-induced mutants of Clostridium acetobutylicum altered in solventogenesis and sporulation. J Ind Microbiol 13:258–268CrossRefGoogle Scholar
  37. 37.
    Edwards AN, Suárez JM, McBride SM (2013) Culturing and maintaining Clostridium difficile in an anaerobic environment. J Vis Exp 79:e50787Google Scholar
  38. 38.
    Cadnum JL, Hurless KN, Deshpande A, Nerandzic MM, Kundrapu S, Donskey CJ (2014) Sensitive and selective culture medium for detection of environmental Clostridium difficile isolates without requirement for anaerobic culture conditions. J Clin Microbiol 52(9):3259–3263CrossRefGoogle Scholar
  39. 39.
    Edwards AN, McBride SM (2016) Isolating and purifying Clostridium difficile spores. Methods Mol Biol 1476:117–128CrossRefGoogle Scholar
  40. 40.
    Underwood S, Guan S, Vijayasubhash V, Baines SD, Graham L, Lewis RJ, Wilcox MH, Stephenson K (2009) Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J Bacteriol 191(23):7296–7305CrossRefGoogle Scholar
  41. 41.
    Vohra P, Poxton IR (2011) Comparision of toxin and spore production in clinically relevant strains of Clostridium difficile. Microbiology 157:1343–1353CrossRefGoogle Scholar
  42. 42.
    Grecz N, Anellis A, Schneider MD (1962) Procedure for cleaning of Clostridium botulinum spores. J Bacteriol 84:552–558Google Scholar
  43. 43.
    Paredes-Sabja D, Sarker MR (2012) Interactions between Clostridium perfringens spores and raw 264.7 macrophages. Anaerobe 18:148–156CrossRefGoogle Scholar
  44. 44.
    Freeman J, Wilcox MH (2003) The effects of storage conditions on viability of Clostridium difficile vegetative cells and spores and toxin activity in human faeces. J Clin Pathol 56:126–128CrossRefGoogle Scholar
  45. 45.
    Weese JS, Staempfli HR, Prescott JF (2000) Survival of Clostridium difficile and its toxins in equine feces: implications for diagnostic test selection and interpretation. J Vet Diagn Investig 12(4):332–336CrossRefGoogle Scholar
  46. 46.
    Mah JH, Kang DH, Tang J (2009) Comparison of viability and heat resistance of Clostridium sporogenes stored at different temperatures. J Food Sci 74(1):M23–M27CrossRefGoogle Scholar
  47. 47.
    Gitaitis RD (1987) Refinement of lyophilization methodology for storage of large numbers of bacterial strains. Plant Dis 71:615–616CrossRefGoogle Scholar
  48. 48.
    Milošević MB, Medić-Pap SS, Ignjatov MV, Petroviã DN (2007) Lyophilization as a method for pathogens long term preservation. Proc Nat Sci 113:203–210Google Scholar
  49. 49.
    Hoefman S, Van Hoorde K, Boon N, Vandamme P, De Vos P, Heylen K (2012) Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane oxidizing bacteria. PLoS One 7(4):e34146CrossRefGoogle Scholar
  50. 50.
    Paredes-Sabja D, Shen A, Sorg JA (2014) Clostridium difficile spore biology: sporulation, germination and spores structural proteins. Trends Microbiol 22(7):406–416CrossRefGoogle Scholar
  51. 51.
    Rodriguez-Palacios A, Lejeune JT (2011) Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol 77(9):3085–3091CrossRefGoogle Scholar
  52. 52.
    Lloyd J, Cheyne J (2017) The origins of the vaccine cold chain and a glimpse of the future. Vaccine 35:2115–2120CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Carlos Augusto Oliveira Júnior
    • 1
  • Rodrigo Otávio Silveira Silva
    • 1
    Email author
  • Diogo Soares Gonçalves Cruz
    • 1
  • Isadora Honorato Pires
    • 1
  • Guilherme Guerra Alves
    • 1
  • Francisco Carlos Faria Lobato
    • 1
  1. 1.Veterinary SchoolFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations