Advertisement

Characteristics of root-cultivable endophytic fungi from Rhododendron ovatum Planch

  • Lei-Chen Lin
  • Yu-Sin Ye
  • Wan-Rou Lin
Environmental Microbiology - Research Paper
  • 1 Downloads

Abstract

Ericoid mycorrhiza can improve the competitiveness of their host plants at the ecosystem level. The ability of ericoid mycorrhizal fungi to thrive under harsh environmental conditions suggests that they are capable of decomposing plant organic matter. This study aims to characterize 2 strains of root-cultivable endophytic fungi, RooDK1 and RooDK6, from Rhododendron ovatum Planch using colony and hyphal morphology, molecular analysis, observations of mycorrhiza, and investigations of adaptation to different sources of organic matter. Nitrogen utilization was also investigated by assessing protease production and growth on different nitrogen sources. Morphological studies indicated that both species are ericoid mycorrhizal fungi; our molecular studies confirmed RooDK1 as Oidiodendron maius and classified RooDK6 as Pezicula ericae. We observed that only RooDK1 can assist in host plant survival by degrading organic matter. This species also secretes protease and has the highest nitrate reductase activity of these 2 endophytes. Thus, RooDK1 has a greater ability to help the host plants thrive in a harsh habitat.

Keywords

Ericoid mycorrhiza Ericoid mycorrhizal fungi Nitrogen utilization Nitrate reductase activity Organic matter Protease 

Notes

References

  1. 1.
    Luteyn JL (2002) Diversity, adaptation, and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccinieae. Bot Rev 68:55–87CrossRefGoogle Scholar
  2. 2.
    Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244:41–53CrossRefGoogle Scholar
  3. 3.
    Johansson M (2001) Fungal associations of Danish Calluna vulgaris roots with special reference to ericoid mycorrhiza. Plant Soil 231:225–232CrossRefGoogle Scholar
  4. 4.
    Jalal MAF, Read DJ (1983) The organic acid composition of Calluna heathland soil with special reference to phyto- and fungi-toxicity. I. Isolation and identification of organic acids. Plant Soil 70:257–272CrossRefGoogle Scholar
  5. 5.
    Jalal MAF, Read DJ, Haslam E (1982) Phenolic composition and its seasonal variation in Calluna vulgaris. Phytochemistry 21:1397–1401CrossRefGoogle Scholar
  6. 6.
    Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems- a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  7. 7.
    Leake JR, Read DJ (1989) The effects of phenolic compounds on nitrogen mobilization by ericoid mycorrhizal systems. Agric Ecosyst Environ 29:225–236CrossRefGoogle Scholar
  8. 8.
    Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263CrossRefGoogle Scholar
  9. 9.
    Schmid E, Oberwinkler F, Gomez LD (1995) Light and electron microscopy of a host-fungus interaction in the roots of some epiphytic ferns from Costa Rica. Can J Bot 73:991–996CrossRefGoogle Scholar
  10. 10.
    Rice AV, Currah RS (2001) Physiological and morphological variation in Oidiodendron maius. Mycotaxon 79:383–396Google Scholar
  11. 11.
    Piercey MM, Thormann MN, Currah RS (2002) Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12:175–180CrossRefPubMedGoogle Scholar
  12. 12.
    Gibson BR, Mitchell DT (2005) Influence of pH on copper and zinc sensitivity of ericoid mycobionts in vitro. Mycorrhiza 15:231–234CrossRefPubMedGoogle Scholar
  13. 13.
    Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63CrossRefPubMedGoogle Scholar
  14. 14.
    Lin LC, Lee MJ, Chen JL (2011) Decomposition of organic matter by the ericoid mycorrhizal endophytes of Formosan rhododendron (Rhododendron formosanum Hemsl.). Mycorrhiza 21:331–339CrossRefPubMedGoogle Scholar
  15. 15.
    Couture M, Fortin JA, Dalpé Y (1983) Oidiodendron griseurn Robak: an endophyte of ericoid mycorrhiza in Vaccinium spp. New Phytol 95:375–380CrossRefGoogle Scholar
  16. 16.
    Dalpé Y (1986) Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifoliurn Ait. by Oidiodendron species. New Phytol 103:391–396CrossRefGoogle Scholar
  17. 17.
    Douglas GC, Heslin MC, Reid C (1989) Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterization of synthesized mycorrhizas. Can J Bot 67:2206–2212CrossRefGoogle Scholar
  18. 18.
    Wang YZ, Lin LC (2014) A note on Oidiodendron maius in Taiwan. CAR 27:1–3Google Scholar
  19. 19.
    Ye YS (2015) The characteristics of endophytes isolated from Rhododendron ovatum Planch. var. ovatum and the resynthesis effect with its host plant. [Master’s thesis], Department of Forestry and Natural Resources, National Chiayi Univ., Chiayi, Taiwan. [In Chinese]Google Scholar
  20. 20.
    McLean CB, Cunnington JH, Lawrie AC (1999) Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytol 144:351–358CrossRefGoogle Scholar
  21. 21.
    Sigler L, Allan T, Lim SR, Berch S, Berbee M (2005) 2 new Cryptosporiopsis species from roots of ericaceous hosts in western north America. Stud Mycol 53:53–62CrossRefGoogle Scholar
  22. 22.
    Rice AV, Currah RS (2006) Oidiodendron maius: saprobe in sphagnum peat, mutualist in ericaceous roots? Microbial root endophytes. Springer, Berlin, pp 227–246Google Scholar
  23. 23.
    Upson R, Read DJ, Newsham KK (2007) Microscopy analyses of field-collected Cephaloziella varians. New Phytol 176:460–471CrossRefPubMedGoogle Scholar
  24. 24.
    Usuki F, Narisawa K (2005) Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chaetospora within roots of Rhododendron obtusum var. kaempferi. Mycorrhiza 15:61–64CrossRefPubMedGoogle Scholar
  25. 25.
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  26. 26.
    Anderson IC, Chambers SM, Cairney JWG (1999) Intra-and interspecific variation in patterns of organic and inorganic nitrogen utilization by three Australian Pisolithus species. Mycol Res 103:1579–1587CrossRefGoogle Scholar
  27. 27.
    Cairney JWG, Sawyer NA, Sharples JM, Meharg AA (2000) Intraspecific variation in nitrogen source utilisation by isolates of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan. Soil Biol Biochem 32:1319–1322CrossRefGoogle Scholar
  28. 28.
    Wu SP (2005) Characteristics, pedogenesis and classification of podzolic soil in Tai-Ping mountain of Ilan. [Ph. D. dissertation], Taipei, Taiwan, Graduate institute of Agricultural chemistry, National Taiwan University. [In Chinese]Google Scholar
  29. 29.
    Nygren CM, Edqvist J, Elfstrand M, Heller G, Taylor AF (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248CrossRefPubMedGoogle Scholar
  30. 30.
    Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279CrossRefPubMedGoogle Scholar
  31. 31.
    Ho I, Trappe JM (1975) Nitrate reducing capacity of 2 vesicular-arbuscular mycorrhizal fungi. Mycologia 67:886–888CrossRefPubMedGoogle Scholar
  32. 32.
    Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S (2013) Extracellular biosynthesis of silver nanoparticles using a novel and nonpathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30:693–704CrossRefPubMedGoogle Scholar
  33. 33.
    Usuki F, Abe PJ, Kakishima M (2003) Diversity of ericoid mycorrhizal fungi isolated from hair roots of Rhododendron obtusum var. kaempferi in a Japanese red pine forest. Mycoscience 44:97–102CrossRefGoogle Scholar
  34. 34.
    Johnston PR, Seifert KA, Stone JK, Rossman AY, Marvanová L (2014) Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 5(1):91–120CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lin LC, Wang CS (2017) Influence of light intensity and photoperiod on the seed germination of four Rhododendron species in Taiwan. Pak J Biol Sci 20:253–259CrossRefPubMedGoogle Scholar
  36. 36.
    Baba T, Hirose D, Sasaki N, Watanabe N, Kobayashi N, Kurashige Y, Karimi F, Ban T (2016) Mycorrhizal formation and diversity of endophytic fungi in hair roots of Vaccinium oldhamii Miq. in Japan. Microbes Environ 31:186–189CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xiao G, Berch SM (1996) Diversity and abundance of ericoid mycorrhizal fungi of Gaultheria shallon on forest clearcuts. Can J Bot 74:337–346CrossRefGoogle Scholar
  38. 38.
    Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581CrossRefGoogle Scholar
  39. 39.
    Sharples JM, Chambers SM, Meharg AA, Cairney JWG (2000) Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162CrossRefGoogle Scholar
  40. 40.
    Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Reserch Press, OttawaGoogle Scholar
  41. 41.
    Xiao G, Berch SM (1999) Organic nitrogen use by salal ericoid mycorrhizal fungi from northern Vancouver Island and impacts on growth in vitro of Gaultheria shallon. Mycorrhiza 9:145–149CrossRefGoogle Scholar
  42. 42.
    Yin LJ, Zhang CY, Yang B (2010) Characteristics of nitrogen absorbed by ericoid mycorrhizal fungi and impact on growth of Rhododendron fortune. Sci Agric Sin 43:868–872 [In Chinese]Google Scholar
  43. 43.
    Sun QL, Zhang CY, Dai SL (2014) Effects of different nitrogen sources on the nitrogen uptake and nitrate reductase activities of ericoid mycorrhizal fungi. J Nanjing For Univ 38:175–178 [In Chinese]Google Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  1. 1.Department of Forestry and Natural ResourcesNational Chiayi UniversityChiayiTaiwan
  2. 2.Bioresource Collection and Research Center (BCRC)Food Industry Research and Development Institute (FIRDI)HsinchuTaiwan

Personalised recommendations