Advertisement

Brazilian Journal of Microbiology

, Volume 50, Issue 1, pp 307–312 | Cite as

Detection of Brucella spp. in dogs at Pantanal wetlands

  • Ana Laura Bello de Oliveira
  • Gabriel Carvalho de Macedo
  • Gracia Maria Soares Rosinha
  • Jhessyca Leal Melgarejo
  • Andreza Gabriela Leão Alves
  • Wanessa Teixeira Gomes Barreto
  • Filipe Martins Santos
  • João Bosco Vilela Campos
  • Heitor Miraglia Herrera
  • Carina Elisei de OliveiraEmail author
Veterinary Microbiology - Research Paper
  • 2 Downloads

Abstract

Canine brucellosis is an infectious disease that produces reproductive disease in both males and females. Although Brucella canis is more common, the infection by Brucella abortus is more frequent in dogs sharing habitats with livestock and wild animals. We decided to investigate the role of dogs in the maintenance of Brucella spp. in the Pantanal wetland. Serum and whole blood samples were collected from 167 dogs. To detect antibodies against B. abortus and B. canis, buffered acidified plate antigen (BAPA) and agar gel immunodiffusion (AGID) tests were performed. To detect Brucella spp., B. abortus and B. canis DNA, PCR was performed using the bcsp31, BruAb2_0168, and BR00953 genes, respectively. To confirm the PCR results, three bcsp31 PCR products were sequenced and compared with sequences deposited in GenBank. The seropositivity rates of 7.8% and 9% were observed for the AGID and BAPA tests, respectively. Positivity rates of 45.5% and 10.8% were observed when testing bcsp31 and BruAb2_0168, respectively, while there was no positivity for BR00953. The sequenced products had 110 base pairs that aligned with 100% identity to B. abortus, B. canis, and B. suis. Considering our results, dogs may be acting as maintenance hosts of Brucella spp. in the Pantanal region.

Keywords

Brucella spp. Reservoir host Serology Molecular tests Pantanal 

Notes

Acknowledgements

We like to thanks Dra. Lara Borges Keid, who provided the positive controls used in molecular tests.

Compliance with ethical standards

All procedures were performed in accordance with the Ethics Committee for Animal Use of the Universidade Católica Dom Bosco (001/2013).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Carmichael LE, Green EG (1990) Canine brucellosis. In: Greene CE (ed) Infectious diseases of the dog and cat. W.B. Saunders, Philadelphia, pp 248–257Google Scholar
  2. 2.
    Brennan SJ, Ngeleka M, Philibert HM, Forbes LB, Allen AL (2008) Canine brucellosis in a Saskatchewan kennel. Can Vet J 49(7):703–708Google Scholar
  3. 3.
    Gyuranecz M, Szeredi L, Rónai Z, Dénes B, Dencso L, Dán Á, Pálmai N, Hauser Z, Lami E, Makrai L, Erdélyi K, Jánosi S (2011) Detection of Brucella canis-induced reproductive diseases in a kennel. J Vet Diagn Investig 23(1):143–147CrossRefGoogle Scholar
  4. 4.
    Hofer E, Bag ZN, Revilla-Fern Ndez S, Melzer F, Tomaso H, Pez-Go L II. et al (2012) First detection of Brucella canis infections in a breeding kennel in Austria. New Microbiol 35(4):507–510Google Scholar
  5. 5.
    Gyuranecz M, Rannals BD, Allen CA, Jánosi S, Keim PS, Foster JT (2013) Within-host evolution of Brucella canis during a canine brucellosis outbreak in a kennel. BMC Vet Res 9:76CrossRefGoogle Scholar
  6. 6.
    Kaden R, Ågren J, Båverud V, Hallgren G, Ferrari S, Börjesson J, Lindberg M, Bäckman S, Wahab T (2014) Brucellosis outbreak in a Swedish kennel in 2013: determination of genetic markers for source tracing. Vet Microbiol 174(3–4):523–530CrossRefGoogle Scholar
  7. 7.
    Lucero NE, Corazza R, Almuzara MN, Reynes E, Escobar GI, Boeri E et al (2010) Human Brucella canis outbreak linked to infection in dogs. Epidemiol Infect 138(2):280–285CrossRefGoogle Scholar
  8. 8.
    Nomura A, Imaoka K, Imanishi H, Shimizu H, Nagura F, Maeda K, Tomino T, Fujita Y, Kimura M, Stein GH (2010) Human Brucella canis infections diagnosed by blood culture. Emerg Infect Dis 16(7):1183–1185CrossRefGoogle Scholar
  9. 9.
    Angel MO, Ristow P, Ko AI, Di-Lorenzo C (2012) Serological trail of Brucella infection in an urban slum population in Brazil. J Infect Dev Ctries 6(9):675–679CrossRefGoogle Scholar
  10. 10.
    Marzetti S, Carranza C, Roncallo M, Escobar GI, Lucero NE (2013) Recent trends in human Brucella canis infection. Comp Immunol Microbiol Infect Dis 36:55–61CrossRefGoogle Scholar
  11. 11.
    Krueger WS, Lucero NE, Brower A, Heil GL, Gray GC (2014) Evidence for unapparent Brucella canis infections among adults with occupational exposure to dogs. Zoonoses Public Health 61(7):509–518CrossRefGoogle Scholar
  12. 12.
    Dentinger CM, Jacob K, Lee LV, Mendez HA, Chotikanatis K, McDonough PL et al (2015) Human Brucella canis infection and subsequent laboratory exposures associated with a puppy, New York City, 2012. Zoonoses Public Health 62(5):407–414CrossRefGoogle Scholar
  13. 13.
    Forbes LB (1990) Brucella abortus infection in 14 farm dogs. J Am Vet Med Assoc 196(6):911–916Google Scholar
  14. 14.
    Baek BK, Lim CW, Rahman MS, Kim CH, Oluoch A, Kakoma I (2003) Brucella abortus infection in indigenous Korean dogs. Can J Vet Res 67(4):312–314Google Scholar
  15. 15.
    Hinic V, Brodard I, Petridou E, Filioussis G, Contos V, Frey J et al (2010) Brucellosis in a dog caused by Brucella melitensis Rev 1. Vet Microbiol 141(3–4):391–392CrossRefGoogle Scholar
  16. 16.
    Cadmus SI, Adesokan HK, Ajala OO, Odetokun WO, Perrett LL, Stack JA (2011) Seroprevalence of Brucella abortus and B. canis in household dogs in southwestern Nigeria: a preliminary report. J S Afr Vet Assoc 82(1):56–57CrossRefGoogle Scholar
  17. 17.
    Mor SM, Wiethoelter AK, Lee A, Moloney B, James DR, Malik R (2016) Emergence of Brucella suis in dogs in New South Wales, Australia: clinical findings and implications for zoonotic transmission. BMC Vet Res 12(1):199CrossRefGoogle Scholar
  18. 18.
    James DR, Golovsky G, Thornton JM, Goodchild L, Havlicek M, Martin P, Krockenberger MB, Marriott DJE, Ahuja V, Malik R, Mor SM (2017) Clinical management of Brucella suis infection in dogs and implications for public health. Aust Vet J 95(1–2):19–25CrossRefGoogle Scholar
  19. 19.
    Truong LQ, Kim JT, Yoon BI, Her M, Jung SC, Hahn TW (2011) Epidemiological survey for Brucella in wildlife and stray dogs, a cat and rodents captured on farms. J Vet Med Sci 73(12):1597–1601CrossRefGoogle Scholar
  20. 20.
    Wareth G, Melzer F, El-Diasty M, Schmoock G, Elbauomy E, Abdel-Hamid N, et al (2017) Isolation of Brucella abortus from a dog and a cat confirms their biological role in re-emergence and dissemination of bovine brucellosis on dairy farms. Transbound Emerg Dis 64:e27–e30Google Scholar
  21. 21.
    Pozer CG, Nogueira F (2004) Flooded native pastures of the northern region of the Pantanal of Mato Grosso: biomass and primary productivity variations. Braz J Biol 64(4):859–866CrossRefGoogle Scholar
  22. 22.
    Alho CJ, Camargo G, Fischer E (2011) Terrestrial and aquatic mammals of the Pantanal. Braz J Biol 71(Suppl 1):297–310CrossRefGoogle Scholar
  23. 23.
    Chate SC, Dias RA, Amaku M, Ferreira F, Moraes GM, Costa Neto AA, Monteiro LARC, Lôbo JR, Figueiredo VCF, Gonçalves VSP, Ferreira Neto JS (2009) Epidemiologic situation of bovine brucellosis in the state of Mato Grosso do Sul. Arq Bras Med Vet Zootec 61(Suppl 1):46–55CrossRefGoogle Scholar
  24. 24.
    Negreiros RL, Dias RA, Ferreira F, Ferreira Neto JS, Gonçalvez VSP, Silva MCP et al (2009) Epidemiologic situation of bovine brucellosis in the state of Mato Grosso. Arq Bras Med Vet Zootec. 61(Suppl 1):56–65CrossRefGoogle Scholar
  25. 25.
    Elisei C, Pellegrin A, Tomas WM, Soares CO, Araújo FR, Funes-Huacca ME, Rosinha GMS (2010) Molecular evidence of Brucella sp. in deer (Ozotoceros bezoarticus) of the southern Pantanal. Pesq Vet Bras 30(6):503–509CrossRefGoogle Scholar
  26. 26.
    Dorneles EMS, Pellegrin AO, Shabib-Péres IAHF, Mathias LA, Mourão G, Bianchi RC et al (2014) Serology for brucellosis in free-ranging crab-eating foxes (Cerdocyon thous) and brown-nosed coatis (Nasua nasua) from Brazilian Pantanal. Ciência Rural 44(12):2193–2196CrossRefGoogle Scholar
  27. 27.
    Furtado MM, Gennari SM, Ikuta CY, Jácomo AT, de Morais ZM, Pena HF et al (2015) Serosurvey of smooth Brucella, Leptospira spp. and Toxoplasma gondii in free-ranging jaguars (Panthera onca) and domestic animals from Brazil. PLoS One 10(11):e0143816CrossRefGoogle Scholar
  28. 28.
    Sambrook J, Russel DW (2001) Rapid isolation of yeast DNA. In: Sambrook J, Russel DW (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 631–632Google Scholar
  29. 29.
    Hinic V, Brodard I, Thomann A, Cvetnic Ž, Makaya PV, Frey J et al (2008) Novel identification and differentiation of Brucella melitensis, B. abortus, B. suis, B. ovis, B. canis, and B. neotomae suitable for both conventional and real-time PCR systems. J Microbiol Methods 75(2):375–378CrossRefGoogle Scholar
  30. 30.
    Baily GG, Krahn JB, Drasar BS (1992) Stoker NG. Detection of Brucella melitensis and Brucella abortus by DNA amplification. J Trop Med Hyg 95(4):271–275Google Scholar
  31. 31.
    Ortiz LF, Muskus C, Sánchez MM, Olivera M (2012) Identification of Brucella canis group 2 in Colombian kennels. Rev Colom Cienc Pecua 25(4):615–619Google Scholar
  32. 32.
    R Main Development Team (2011) A: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org/. Accessed 3 Dec 2017
  33. 33.
    Mayfield JE, Bricker BJ, Godfrey H, Crosby RM, Knight DJ, Halling SM et al (1988) The cloning, expression, and nucleotide sequence of a gene coding for an immunogenic Brucella abortus protein. Gene 63(1):1–9CrossRefGoogle Scholar
  34. 34.
    Queipo-Ortuño MI, Colmenero JD, Baeza G, Morata P (2005) Comparison between light cycler real-time polymerase chain reaction (PCR) assay with serum and PCR-enzyme-linked immunosorbent assay with whole blood samples for the diagnosis of human brucellosis. Clin Infect Dis 40(2):260–264CrossRefGoogle Scholar
  35. 35.
    Zamanian M, Hashemi Tabar GR, Rad M, Haghparast A (2015) Evaluation of different primers for detection of Brucella in human and animal serum samples by using PCR method. Arch Iranian Med 18(1):44–50Google Scholar
  36. 36.
    Gee JE, De BK, Levett PN, Whitney AM, Novak RT, Popovic T (2004) Use of 16S rRNA gene sequencing for rapid confirmatory identification of Brucella isolates. J Clin Microbiol 42(8):3649–3654CrossRefGoogle Scholar
  37. 37.
    Da Costa M, Guillou JP, Garin-Bastuji B, Thiébaud M, Dubray G (1996) Specificity of six gene sequences for the detection of the genus Brucella by DNA amplification. J Appl Bacteriol 81(3):267–275CrossRefGoogle Scholar
  38. 38.
    Scholz HC, Pfeffer M, Witte A, Neubauer H, Al Dahouk S, Wernery U et al (2008) Specific detection and differentiation of Ochrobactrum anthropi, Ochrobactrum intermedium and Brucella spp. by a multi-primer PCR that targets the recA gene. J Med Microbiol 57(Pt 1):64–71CrossRefGoogle Scholar
  39. 39.
    Cha SB, Rayamajhi N, Lee WJ, Shin MK, Jung MH, Shin SW, Kim JW, Yoo HS (2012) Generation and envelope protein analysis of internalization defective Brucella abortus mutants in professional phagocytes, RAW 264.7. FEMS Immunol Med Microbiol 64(2):244–254CrossRefGoogle Scholar
  40. 40.
    García-Yoldi D, Marín CM, de Miguel MJ, Muñoz PM, Vizmanos JL, López-Goñi I et al (2006) Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51 and Brucella melitensis Rev1. Clin Chem 52(4):779–781CrossRefGoogle Scholar
  41. 41.
    Al Dahouk S, Hofer E, Tomaso H, Vergnaud G, Le Flèche P, Cloeckaert A et al (2012) Intraspecies biodiversity of the genetically homologous species Brucella microti. Appl Environ Microbiol 78(5):1534–1543CrossRefGoogle Scholar
  42. 42.
    Hollett RB (2006) Canine brucellosis: outbreaks and compliance. Theriogenology 66(3):575–587CrossRefGoogle Scholar
  43. 43.
    Sangari FJ, Seoane A, Rodríguez MC, Agüero J, García Lobo JM (2007) Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun 75(2):774–780CrossRefGoogle Scholar
  44. 44.
    Brasil. Programa Nacional de Controle e Erradicação da Brucelose e da Tuberculose Animal – PNCEBT. Ministério da Agricultura, Pecuária e Abastecimento, Brasília, 188pp, 2006Google Scholar
  45. 45.
    Nielsen K (2002) Diagnosis of brucellosis by serology. Vet Microbiol 90(1–4):447–459CrossRefGoogle Scholar
  46. 46.
    Miyashiro S, Scarcelli E, Piatti RM, Campos FR, Vialta A, Keid LB, Dias RA, Genovez ME (2007) Detection of Brucella abortus DNA in illegal cheese from São Paulo and Minas Gerais and differentiation of B19 vaccinal strain by means of the polymerase chain reaction (PCR). Braz J Microbiol 38(1):17–22CrossRefGoogle Scholar
  47. 47.
    Pacheco WA, Genovez ME, Pozzi CR, Silva LM, Azevedo SS, Did CC et al (2012) Excretion of Brucella abortus vaccine B19 strain during a reproductive cycle in dairy cows. Braz J Microbiol 43(2):594–601CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Ana Laura Bello de Oliveira
    • 1
  • Gabriel Carvalho de Macedo
    • 1
  • Gracia Maria Soares Rosinha
    • 2
  • Jhessyca Leal Melgarejo
    • 1
  • Andreza Gabriela Leão Alves
    • 1
  • Wanessa Teixeira Gomes Barreto
    • 1
  • Filipe Martins Santos
    • 1
  • João Bosco Vilela Campos
    • 1
  • Heitor Miraglia Herrera
    • 1
  • Carina Elisei de Oliveira
    • 1
    Email author
  1. 1.Universidade Católica Dom Bosco (UCDB)Campo GrandeBrazil
  2. 2.Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) – Gado de CorteCampo GrandeBrazil

Personalised recommendations