Advertisement

Experimental and Computational Multiphase Flow

, Volume 1, Issue 3, pp 201–211 | Cite as

Large eddy simulation of multiphase flows using the volume of fluid method: Part 2—A-posteriori analysis of liquid jet atomization

  • S. Ketterl
  • M. Reißmann
  • Markus KleinEmail author
Research Article
  • 68 Downloads

Abstract

Multiphase flows with two or more immiscible liquids, separated by a sharp interface with surface tension, occur in a large variety of environmental and industrial flow problems. The ability to accurately predict such flows has implications for safety, economy, and ecology. As a scale resolving technique, large eddy simulation (LES) is a turbulence model that has the potential to describe such flows with good accuracy. However, during the filtering process of the two-phase flow equations, several unclosed terms appear that are unknown from single-phase flow and their modelling is not yet standardized in the open literature. In this paper, the unknown terms are systematically analyzed based on a-posteriori LES and comparison with a direct numerical simulation (DNS) database. It is shown that the closures for each unknown term strongly interact with the other terms and as well with the numerical scheme. Therefore, only a modelling strategy consisting of a complete set of sub-models and numerical discretization can be identified, rather than individual optimal models. Several promising alternatives are identified and discussed, based on existing and newly developed turbulence and interfacial subgrid scale (SGS) closures.

Keywords

two-phase flow LES a-posteriori analysis liquid jet atomization 

Notes

Acknowledgements

Support by the German Research Foundation (DFG, KL1456/1-1) is gratefully acknowledged. Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under Grant No. pr48no. The authors also express their gratitude to the developers of PARIS for providing the source code.

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M. et al. 2016. TensorFlow: A system for large-scale machine learning. In: Proceedings of USENIX Symposium on Operating Systems Design and Implementation, 16: 265–283Google Scholar
  2. Alajbegovic, A. 2001. Large eddy simulation formalism applied to multiphase flows. In: Proceedings of the ASME 2001 Fluids Engineering Division Summer Meeting, 1: 529–534.Google Scholar
  3. Allauddin, U., Klein, M., Pfitzner, M., Chakraborty, N. 2017. A priori and a posteriori analyses of algebraic flame surface density modeling in the context of Large Eddy Simulation of turbulent premixed combustion. Numer Heat Tr A: Appl, 71: 153–171.CrossRefGoogle Scholar
  4. Anderson, B. W., Domaradzki, J. A. 2012. A subgrid-scale model for large-eddy simulation based on the physics of interscale energy transfer in turbulence. Phys Fluids, 24: 065104.CrossRefGoogle Scholar
  5. Aniszewski, W., Bogusławski, A., Marek, M., Tyliszczak, A. 2012. A new approach to sub-grid surface tension for LES of two-phase flows. J Comput Phys, 231: 7368–7397.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bianchi, G. M., Minelli, F., Scardovelli, R., Zaleski, S. 2007. 3D large scale simulation of the high-speed liquid jet atomization. SAE Transactions, 116: 333–346.Google Scholar
  7. Chesnel, J., Menard, T., Reveillon, J., Demoulin, F.-X. 2011a. Subgrid analysis of liquid jet atomization. Atomization Spray, 21: 41–67.CrossRefGoogle Scholar
  8. Chesnel, J., Reveillon, J., Menard, T., Demoulin, F.-X. 2011b. Large eddy simulation of liquid jet atomization. Atomization Spray, 21: 711–736.CrossRefGoogle Scholar
  9. Chollet, F. et al. 2015. Keras: Deep learning library for theano and tensorflow. Available at https://keras.io/.Google Scholar
  10. Clark, R. A., Ferziger, J. H., Reynolds, W. C. 1979. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J Fluid Mech, 91: 1–16.CrossRefzbMATHGoogle Scholar
  11. De Villiers, E., Gosman, A. D., Weller, H. G. 2004. Large eddy simulation of primary diesel spray atomization. SAE Transactions, 113: 193–206.Google Scholar
  12. Fulgosi, M., Lakehal, D., Banerjee, S., de Angelis, V. 2003. Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J Fluid Mech, 482: 319–345.CrossRefzbMATHGoogle Scholar
  13. Garnier, E., Adams, N., Sagaut, P. 2009. Large Eddy Simulation for Compressible Flows. Dordrecht: Springer Netherlands.CrossRefzbMATHGoogle Scholar
  14. Grosshans, H., Movaghar, A., Cao, L., Oevermann, M., Szász, R. Z., Fuchs, L. 2016. Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters. Comput Fluids, 136: 312–323.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Hasslberger, J., Ketterl, S., Klein, M., Chakraborty, N. 2019. Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis. J Fluid Mech, 859: 819–838.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Hasslberger, J., Klein, M., Chakraborty, N. 2018. Flow topologies in bubble-induced turbulence: A direct numerical simulation analysis. J Fluid Mech, 857: 270–290.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Herrmann, M. 2013. A sub-grid surface dynamics model for sub-filter surface tension induced interface dynamics. Comput Fluids, 87: 92–101.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Herrmann, M., Gorokhovski, M. 2008. An outline of a LES subgrid model for liquid/gas phase interface dynamics. In: Proceedings of the 2008 CTR Summer Program, 171–181.Google Scholar
  19. Jiang, G.-S., Shu, C.-W. 1996. Efficient implementation of weighted ENO schemes. J Comput Phys, 126: 202–228.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Ketterl, S., Klein, M. 2018. A-priori assessment of subgrid scale models for large-eddy simulation of multiphase primary breakup. Comput Fluids, 165: 64–77.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Klein, M. 2002. Direkte Numerische Simulation des primären Strahlzerfalls in Einstoffzerstäuberdüsen. Ph.D. Thesis. Technical University Darmstadt.Google Scholar
  22. Klein, M., Ketterl, S., Hasslberger, J. 2019. Large eddy simulation of multiphase flows using the volume of fluid method: Part 1: Governing equations and a priori analysis. Exp Comput Multiph Flow, 1: 130–144.CrossRefGoogle Scholar
  23. Klein, M., Sadiki, A., Janicka, J. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys, 186: 652–665.CrossRefzbMATHGoogle Scholar
  24. Kobayashi, H. 2005. The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys Fluids, 17: 045104.CrossRefzbMATHGoogle Scholar
  25. Kobayashi, H. 2018. Improvement of the SGS model by using a scale-similarity model based on the analysis of SGS force and SGS energy transfer. Int J Heat Fluid Fl, 72: 329–336.CrossRefGoogle Scholar
  26. Labourasse, E., Lacanette, D., Toutant, A., Lubin, P., Vincent, S., Lebaigue, O., Caltagirone, J. P., Sagaut, P. 2007. Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests. Int J Multiphase Flow, 33: 1–39.CrossRefGoogle Scholar
  27. Larocque, J., Vincent, S., Lacanette, D., Lubin, P., Caltagirone, J. P. 2010. Parametric study of LES subgrid terms in a turbulent phase separation flow. Int J Heat Fluid Fl, 31: 536–544.CrossRefGoogle Scholar
  28. Leonard, B. P. 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Method Appl M, 19: 59–98.CrossRefzbMATHGoogle Scholar
  29. Li, X. G., Tankin, R. S. 1991. On the temporal instability of a two-dimensional viscous liquid sheet. J Fluid Mech, 226: 425–443.CrossRefzbMATHGoogle Scholar
  30. Liao, Y. X., Ma, T., Liu, L., Ziegenhein, T., Krepper, E., Lucas, D. 2018. Eulerian modelling of turbulent bubbly flow based on a baseline closure concept. Nucl Eng Des, 337: 450–459.CrossRefGoogle Scholar
  31. Ling, Y., Fuster, D., Tryggvason, G., Zaleski, S. 2019. A two-phase mixing layer between parallel gas and liquid streams: Multiphase turbulence statistics and influence of interfacial instability. J Fluid Mech, 859: 268–307.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Ling, Y., Fuster, D., Zaleski, S., Tryggvason, G. 2017. Spray formation in a quasiplanar gas-liquid mixing layer at moderate density ratios: A numerical closeup. Phys Rev Fluids, 2: 014005.CrossRefGoogle Scholar
  33. Ling, Y., Zaleski, S., Scardovelli, R. 2015. Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model. Int J Multiphase Flow, 76: 122–143.MathSciNetCrossRefGoogle Scholar
  34. Liovic, P., Lakehal, D. 2007a. Multi-physics treatment in the vicinity of arbitrarily deformable gas-liquid interfaces. J Comput Phys, 222: 504–535.MathSciNetCrossRefzbMATHGoogle Scholar
  35. Liovic, P., Lakehal, D. 2007b. Interface-turbulence interactions in large-scale bubbling processes. Int J Heat Fluid Fl, 28: 127–144.CrossRefzbMATHGoogle Scholar
  36. Liovic, P., Lakehal, D. 2012. Subgrid-scale modelling of surface tension within interface tracking-based Large Eddy and Interface Simulation of 3D interfacial flows. Comput Fluids, 63: 27–46.MathSciNetCrossRefzbMATHGoogle Scholar
  37. McCulloch, W. S., Pitts, W. 1943. A logical calculus of the ideas immanent in nervous activity. B Math Biophys, 5: 115–133.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Ménard, T., Tanguy, S., Berlemont, A. 2007. Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. Int J Multiphase Flow, 33: 510–524.CrossRefGoogle Scholar
  39. Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., Lee, J. 2011. Using singular values to build a subgrid-scale model for large eddy simulations. Phys Fluids, 23: 085106.CrossRefGoogle Scholar
  40. Pohlheim, H. 2013. Evolutionäre Algorithmen: Verfahren, Operatoren und Hinweise für die Praxis. Springer-Verlag.Google Scholar
  41. Rider, W. J., Kothe, D. B. 1998. Reconstructing volume tracking. J Comput Phys, 141: 112–152.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Roe, P. L. 1986. Characteristic-based schemes for the Euler equations. Annu Rev Fluid Mech, 18: 337–365.MathSciNetCrossRefzbMATHGoogle Scholar
  43. Sabisch, W., Wörner, M., Grötzbach, G., Cacuci, D. G. 2001. 3D volume-of-fluid simulation of wobbling bubble in a gas-liquid system of low Morton number. In: Proceedings of the 4th International Conference on Multiphase Flow.Google Scholar
  44. Sagaut, P. 2002. Large Eddy Simulation for Incompressible Flows. Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefzbMATHGoogle Scholar
  45. Sagaut, P., Germano, M. 2005. On the filtering paradigm for LES of flows with discontinuities. J Turbul, 6: N23.MathSciNetCrossRefGoogle Scholar
  46. Shirani, E., Ghadiri, F., Ahmadi, A. 2011. Modeling and simulation of interfacial turbulent flows. J Appl Fluid Mech, 4: 43–49.Google Scholar
  47. Shu, C.-W., Osher, S. 1988. Efficient implementation of essentially nonoscillatory shock-capturing schemes. J Comput Phys, 77: 439–471.MathSciNetCrossRefzbMATHGoogle Scholar
  48. Toutant, A., Chandesris, M., Jamet, D., Lebaigue, O. 2009. Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part 1: Theoretical development. Int J Multiphase Flow, 35: 1100–1118.CrossRefGoogle Scholar
  49. Toutant, A., Labourasse, E., Lebaigue, O., Simonin, O. 2008. DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: A priori tests for LES two-phase flow modelling. Comput Fluids, 37: 877–886.MathSciNetCrossRefzbMATHGoogle Scholar
  50. Tryggvason, G., Scardovelli, R., Zaleski, S. 2011. Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  51. Vincent, S., Larocque, J., Lacanette, D., Toutant, A., Lubin, P., Sagaut, P. 2008. Numerical simulation of phase separation and a priori two-phase LES filtering. Comput Fluids, 37: 898–906.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Vreman, A. W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys Fluids, 16: 3670–3681.CrossRefzbMATHGoogle Scholar
  53. Zhou, G. 1995. Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers. Ph.D. Thesis. Goteborg, Sweden: Chalmers Univ. of Tech.Google Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringBundeswehr University MunichNeubibergGermany
  2. 2.Department of Computer ScienceBundeswehr University MunichNeubibergGermany

Personalised recommendations