Advertisement

A review of pebble flow study for pebble bed high temperature gas-cooled reactor

  • Shengyao Jiang
  • Jiyuan Tu
  • Xingtuan Yang
  • Nan GuiEmail author
Review Article
  • 37 Downloads

Abstract

The pebble bed high temperature gas-cooled reactor is a promising generation-IV reactor, which uses large fuel pebbles and helium gas as coolant. The pebble bed flow is a fundamental issue for both academic investigation and engineering application, e.g., reactor core design and safety analysis. This work performed a review of recent progress on pebble flow study, focusing on the important issues like pebble flow, gas phase hydrodynamics, and inter-phase heat transfer (thermal hydraulics). Our group’s researches on pebble flow have also been reviewed through the aspects of phenomenological observation and measurement, voidage distribution, geometric and parameter optimization, pebble flow mechanisms, flow regime categorization, and fundamentals of modelings of pebble flow and radiation. Finally, the major problems or possible directions of research are concluded which would be some of our focuses on the pebble bed flow study.

Keywords

pebble bed pebble flow particle high temperature gas-cooled reactor thermal hydraulics discrete element method 

Notes

Acknowledgements

The authors are grateful for the support of this research by the National Natural Science Foundation of China (Grant No. 51576211), the National High-Tech R&D Program of China (863 Program, Grant No. 2014AA052701), the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51621062), and the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD, Grant No. 201438).

References

  1. Abdulmohsin, R. S., Al-Dahhan, M. H. 2015. Characteristics of convective heat transport in a packed pebble-bed reactor. Nucl Eng Des, 284: 143–152.Google Scholar
  2. Abdulmohsin, R. S., Al-Dahhan, M. H. 2016. Axial dispersion and mixing phenomena of the gas phase in a packed pebble-bed reactor. Ann Nucl Energy, 88: 100–111.Google Scholar
  3. Abou-Sena, A., Arbeiter, F., Boccaccini, L. V., Rey, J., Schlindwein, G. 2013. Experimental study and analysis of the purge gas pressure drop across the pebble beds for the fusion HCPB blanket. Fusion Eng Des, 88: 243–247.Google Scholar
  4. Abou-Sena, A., Arbeiter, F., Boccaccini, L. V., Schlindwein, G. 2014. Measurements of the purge helium pressure drop across pebble beds packed with lithium orthosilicate and glass pebbles. Fusion Eng Des, 89: 1459–1463.Google Scholar
  5. Ades, M. J., Peddicord, K. L. 1982. A model for effective thermal conductivity of unrestructured sphere-pac fuel. Nucl Sci Eng, 81: 540–550.Google Scholar
  6. Al Falahi, F., Mueller, G., Al-Dahhan, M. 2018. Pebble bed nuclear reactor structure study: A comparison of the experimental and calculated void fraction distribution. Prog Nucl Energ, 106: 153–161.Google Scholar
  7. Amini, N., Hassan, Y. A. 2014. Experimental study of bypass flow in near wall gaps of a pebble bed reactor using hot wire anemometry technique. Ann Nucl Energ, 65: 60–71.Google Scholar
  8. Bauer, R., Schluender, E. U. 1978. Effective radial thermal conductivity of packings in gas flow, part II: Thermal conductivity of the packing fraction without gas flow. Int Chem Eng, 18: 189–204.Google Scholar
  9. Bäumer, R. 1990. AVR: Experimental High-Temperature Reactor: 21 Years of Successful Operation for A Future Energy Technology. The Association of German Engineers (VDI), the Soc for Energy Technologies, VDI-Verlag GmbH, Düsseldorf.Google Scholar
  10. Boer, B., Kloosterman, J. L., Lathouwers, D., van der Hagen, T. H. J. J. 2009. In-core fuel management optimization of pebble-bed reactors. Ann Nucl Energy, 36: 1049–1058.Google Scholar
  11. Chen, H., Fu, L. 2014. Investigation on the pebble bed flow model in VSOP. Nucl Eng Des, 271: 352–355.Google Scholar
  12. Chen, L. S., Lee, J. 2017. Experimental analysis of the thermal field and heat transfer characteristics of a pebble-bed core in a high-temperature gas-cooled reactor. Ann Nucl Energ, 110: 338–348.Google Scholar
  13. Chen, L., Chen, Y. H., Huang, K., Liu, S. L. 2016. Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB. Fusion Eng Des, 106: 1–8.Google Scholar
  14. Chen, L., Ma, X. B., Cheng, X. M., Jiang, K. C., Huang, K., Liu, S. L. 2015. Theoretical modeling of the effective thermal conductivity of the binary pebble beds for the CFETR-WCCB blanket. Fusion Eng Des, 101: 148–153.Google Scholar
  15. Chen, Y. H., Chen, L., Liu, S. L., Luo, G. N. 2017a. Flow characteristics analysis of purge gas in unitary pebble beds by CFD simulation coupled with DEM geometry model for fusion blanket. Fusion Eng Des, 114: 84–90.Google Scholar
  16. Chen, Z. P., Chen, X. M., Zheng, Y. H., Sun, J., Chen, F. B., Shi, L., Li, F., Dong, Y. J., Zhang, Z. Y. 2017b. Air ingress analysis of chimney effect in the 200 MWe pebble-bed modular high temperature gas-cooled reactor. Ann Nucl Energy, 106: 143–153.Google Scholar
  17. De Beer, M., du Toit, C. G., Rousseau, P. G. 2017. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect. Nucl Eng Des, 314: 67–81.Google Scholar
  18. Ebara, S., Yokomine, T., Shimizu, A., Hashizume, H. 2010. Numerical simulation of turbulent flow in microscopic pore scale of pebble bed by large-eddy simulation. Fusion Eng Des, 85: 1638–1641.Google Scholar
  19. Ferng, Y. M., Lin, K. Y. 2013. Investigating effects of BCC and FCC arrangements on flow and heat transfer characteristics in pebbles through CFD methodology. Nucl Eng Des, 258: 66–75.Google Scholar
  20. Greyvenstein, G., Rousseau, P., Nicholls, D. 2003. Design and successful testing of a physical model of the pebble bed modular reactor. Int J Nucl Power, 2: 105–110.Google Scholar
  21. Gui, N., Yang, X. T., Jiang, S. Y., Tu, J. Y. 2016a. A soft-sphere-imbedded pseudo-hard-particle model for simulation of discharge flow of brick particles. AIChE J, 62: 3562–3574.Google Scholar
  22. Gui, N., Yang, X. T., Jiang, S. Y., Tu, J. Y., Fan, J. R. 2016b. Extended HPM-DEM coupled simulation of drainage of square particles in a 2D hopper flow. AIChE J, 62: 1863–1876.Google Scholar
  23. Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2014. Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor. Nucl Eng Des, 270: 295–301.Google Scholar
  24. Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016c. A generalized particle-to-wall collision model for non-spherical rigid particles. Adv Powder Technol, 27: 154–163.Google Scholar
  25. Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016d. An extension of hard-particle model for three-dimensional non-spherical particles: Mathematical formulation and validation. Appl Math Model, 40: 2485–2499.MathSciNetGoogle Scholar
  26. Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016e. Effects of rocking frequency and amplitude on particle discharge in rocking bed: A DEM study. Powder Technol, 292: 31–45.Google Scholar
  27. Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017a. Effect of roundness on the discharge flow of granular particles. Powder Technol, 314: 140–147.Google Scholar
  28. Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017b. Flow fields and packing states in the discharge flow of noncircular particles: A SIPHPM simulation. Particuology, 35: 10–21.Google Scholar
  29. Hansen, U., Schulten, R., Teuchert, E. 1972. Physical properties of the “once through then out” pebble-bed reactor. Nucl Sci Eng, 47: 132–139.Google Scholar
  30. Hao, C., Chen, Y. Y., Guo, J., Wang, L. D., Li, F. 2018. Mechanism analysis of the contribution of nuclear data to the keff uncertainty in the pebble bed HTR. Ann Nucl Energy, 120: 857–868.Google Scholar
  31. Hassan, Y. A., Dominguez-Ontiveros, E. E. 2008. Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl Eng Des, 238: 3080–3085.Google Scholar
  32. Ho, H. Q., Obara, T. 2016. Design concept for a small pebble bed reactor with ROX fuel. Ann Nucl Energy, 87: 471–478.Google Scholar
  33. International Atomic Energy Agency (IAEA). 2001. Current status and future development of modular high temperature gas cooled reactor technology. IAEA-TECDOC-1198.Google Scholar
  34. Jia, X. L., Gui, N., Wu, H., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017a. Numerical study and analysis of the effects of recirculation flow rates in drained pebble flow. Powder Technol, 314: 608–619.Google Scholar
  35. Jia, X. L., Gui, N., Yang, X. T., Tu, J. Y., Jia, H. J., Jiang, S. Y. 2017b. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor. Ann Nucl Energy, 102: 1–10.Google Scholar
  36. Jia, X. L., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016. Experimental study and analysis of velocity correlation and intermittency of very slow and dense pebble flow in a silo bed. Nucl Eng Des, 305: 626–638.Google Scholar
  37. Jia, X. L., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017c. Fluctuation and arching formation of very dense and slow pebble flow in a silo bed. J Nucl Sci Technol, 54: 111–126.Google Scholar
  38. Jiang, S. Y., Yang, X. T., Tang, Z. W., Wang, W. J., Tu, J. Y., Liu, Z. Y., Li, J. 2012. Experimental and numerical validation of a two-region-designed pebble bed reactor with dynamic core. Nucl Eng Des, 246: 277–285.Google Scholar
  39. Kadak, A. C. 2005. A future for nuclear energy: Pebble bed reactors. Int J Critical Infrastructures, 1: 330–345.Google Scholar
  40. Keppler, I. 2013. Failure analysis of pebble bed reactors during earthquake by discrete element method. Nucl Eng Des, 258: 102–106.Google Scholar
  41. Khane, V., Said, I. A., Al-Dahhan, M. H. 2016a. Experimental investigation of pebble flow dynamics using radioactive particle tracking technique in a scaled-down Pebble Bed Modular Reactor (PBMR). Nucl Eng Des, 302: 1–11.Google Scholar
  42. Khane, V., Taha, M. M., Al-Dahhan, M. H. 2016b. Experimental investigation of the overall residence time of pebbles in a pebble bed reactor (PBR) using radioactive pebble. Prog Nucl Energ, 93: 267–276.Google Scholar
  43. Kim, M. H., Lim, H. S., Lee, W. J. 2009. Computational fluid dynamics assessment of the local hot core temperature in a pebble-bed type very high temperature reactor. J Eng Gas Turb Power, 131: 012905.Google Scholar
  44. Kim, S. H., Kim, H. C., Kim, J. K., Noh, J. M. 2013. A study on evaluation of pebble flow velocity with modification of the kinematic model for pebble bed reactor. Ann Nucl Energy, 55: 322–330.Google Scholar
  45. Kloosterman, J. L. 2003. Application of boron and gadolinium burnable Poison particles in UO2 and PUO2 fuels in HTRs. Ann Nucl Energy, 30: 1807–1819.Google Scholar
  46. Koster, A., Matzner, H. D., Nicholsi, D. R. 2003. PBMR design for the future. Nucl Eng Des, 222: 231–245.Google Scholar
  47. Laguerre, O., Ben Amara, S., Alvarez, G., Flick, D. 2008. Transient heat transfer by free convection in a packed bed of spheres: Comparison between two modelling approaches and experimental results. Appl Therm Eng, 28: 14–24.Google Scholar
  48. Latifi, M. S., du Toit, C. G. 2019. A numerical study to investigate the effect of inlet Reynolds number on the thermal-fluid phenomena in the supercritical carbon dioxide-cooled pebble bed reactor. Arab J Sci Eng, 44: 981–991.Google Scholar
  49. Lee, J. J., Park, G. C., Kim, K. Y., Lee, W. J. 2007a. Numerical treatment of pebble contact in the flow and heat transfer analysis of a pebble bed reactor core. Nucl Eng Des, 237: 2183–2196.Google Scholar
  50. Lee, J. J., Yoon, S. J., Park, G. C., Lee, W. J. 2007b. Turbulence-induced heat transfer in PBMR core using LES and RANS. J Nucl Sci Technol, 44: 985–996.Google Scholar
  51. Lee, J. Y., Lee, S. Y. 2009. Flow visualization in the scaled up pebble bed of high temperature gas-cooled reactor using particle image velocimetry method. J Eng Gas Turb Power, 131: 064502.Google Scholar
  52. Li, H., Qiu, S. Z., Zhang, Y. J., Su, G. H., Tian, W. X. 2012. Thermal hydraulic investigations with different fuel diameters of pebble bed water cooled reactor in CFD simulation. Ann Nucl Energ, 42: 135–147.Google Scholar
  53. Li, Y. H., Ji, W. 2013. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems. Nucl Eng Des, 258: 275–283.Google Scholar
  54. Li, Y. J., Jia, B., Zhang, S., Wang, X. L. 2017. Study on the mechanical behaviors and elastic modulus of mixed fusion pebble beds. Fusion Eng Des, 121: 356–360.Google Scholar
  55. Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2015. Effect of wall structure on pebble stagnation behavior in pebble bed reactor. Ann Nucl Energy, 80: 195–202.Google Scholar
  56. Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016a. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor. Nucl Eng Des, 300: 495–505.Google Scholar
  57. Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016b. Effect of friction on pebble flow pattern in pebble bed reactor. Ann Nucl Energy, 94: 32–43.Google Scholar
  58. Li, Y., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016c. Numerical study of gravity-driven dense granular flows on flow behavior characterization. Powder Technol, 297: 144–152.Google Scholar
  59. Li, Y., Xu, Y., Jiang, S. 2009. DEM simulations and experiments of pebble flow with monosized spheres. Powder Technol, 193: 312–318.Google Scholar
  60. Liu, H. B., Du, D., Han, Z. D., Chang, B. H., Pan, J. L., Shen, P. 2017. Pneumatic transportation pattern of fuel pebbles in a pebble-bed reactor. Ann Nucl Energy, 99: 434–443.Google Scholar
  61. Liu, H. B., Du, D., Han, Z. D., Zou, Y. R., Pan, J. L. 2015. Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor. Energy, 79: 33–39.Google Scholar
  62. Liu, H. B., Du, D., Shen, P., Chang, B. H., Zhang, W. Z., Pan, J. L. 2018. Research on flow field characteristics and force analysis of fuel elements pneumatic transportation in a pebble bed reactor. Ann Nucl Energy, 111: 568–578.Google Scholar
  63. Lo Frano, R., Aquaro, D., Pupeschi, S., Moscardini, M. 2014. Thermomechanical test rig for experimental evaluation of thermal conductivity of ceramic pebble beds. Fusion Eng Des, 89: 1309–1313.Google Scholar
  64. Lo Frano, R., Aquaro, D., Scaletti, L. 2016. Thermo-mechanical characterization of ceramic pebbles for breeding blanket. Fusion Eng Des, 109-111: 383–388.Google Scholar
  65. Lohnert, G. H. 1990. Technical design features and essential safety-related properties of the HTR-module. Nucl Eng Des, 121: 259–275.Google Scholar
  66. Luo, X., Li, X., Yu, S. 2010. Nuclear graphite friction properties and the influence of friction properties on the pebble bed. Nucl Eng Des, 240: 2674–2681.Google Scholar
  67. McCabe, W. L., Smith, J. C., Harriott, P. 1985. Unit Operations of Chemical Engineering. New York: McGraw-Hill.Google Scholar
  68. Nedderman, R. M., Tüzün, U. 1979. A kinematic model for the flow of granular materials. Powder Technol, 22: 243–253.Google Scholar
  69. Nicholls, D. R. 2000. Status of the pebble bed modular reactor. Nucl Energ, 39: 231–236.Google Scholar
  70. Northrup, M. A., Kulp, T. J., Angel, S. M. 1991. Fluorescent particle image velocimetry: Application to flow measurement in refractive index-matched porous media. Appl Opt, 30: 3034.Google Scholar
  71. Northrup, M. A., Kulp, T. J., Angel, S. M., Pinder, G. F. 1993. Direct measurement of interstitial velocity field variations in a porous medium using fluorescent-particle image velocimetry. Chem Eng Sci, 48: 13–21.Google Scholar
  72. Pupeschi, S., Knitter, R., Kamlah, M. 2017. Effective thermal conductivity of advanced ceramic breeder pebble beds. Fusion Eng Des, 116: 73–80.Google Scholar
  73. Reimann, J., Abou-Sena, A., Nippen, R., Tafforeau, P. 2013. Pebble bed packing in prismatic containers. Fusion Eng Des, 88: 2343–2347.Google Scholar
  74. Rycroft, C. H., Dehbi, A., Lind, T., Güntay, S. 2013. Granular flow in pebble-bed nuclear reactors: Scaling, dust generation, and stress. Nucl Eng Des, 265: 69–84.Google Scholar
  75. Rycroft, C. H., Grest, G. S., Landry, J. W., Bazant, M. Z. 2006. Analysis of granular flow in a pebble-bed nuclear reactor. Phys Rev E, 74: 021306.Google Scholar
  76. Ryskamp, J. M., Harvego, E. A., Khericha, S. T., Gorski, E. J., Beitel, G. A., Harrell, D. J. 2004. Next generation nuclear plant: High-level functions and requirements. In: Proceedings of the 12th International Conference on Nuclear Engineering, 395–402.Google Scholar
  77. Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2012. Optimization of a pebble bed configuration for quasi-direct numerical simulation. Nucl Eng Des, 242: 331–340.Google Scholar
  78. Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2013a. Large eddy simulation of a nuclear pebble bed configuration. Nucl Eng Des, 261: 10–19.Google Scholar
  79. Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2013b. Quasi-direct numerical simulation of a pebble bed configuration. Part I: Flow (velocity) field analysis. Nucl Eng Des, 263: 473–489.Google Scholar
  80. Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2013c. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis. Nucl Eng Des, 263: 490–499.Google Scholar
  81. Shams, A., Roelofs, F., Komen, E. M. J., Baglietto, E. 2015. Numerical simulation of nuclear pebble bed configurations. Nucl Eng Des, 290: 51–64.Google Scholar
  82. Sobes, V., Forget, B., Kadak, A. 2011. Individual pebble temperature peaking factor due to local pebble arrangement in a pebble bed reactor core. Nucl Eng Des, 241: 124–133.Google Scholar
  83. Sun, X. M., Chen, Z. P., Sun, J., Liu, Y., Zheng, Y. H., Li, F., Shi, L. 2018. CFD investigation of bypass flow in HTR-PM. Nucl Eng Des, 329: 147–155.Google Scholar
  84. Sun, X. M., Dong, Y. J., Hao, P. F., Shi, L., Li, F., Feng, Y. T. 2017. Three-dimensional numerical simulation of quasi-static pebble flow. Adv Powder Technol, 28: 499–505.Google Scholar
  85. Tehranian, F., Abdou, M. A. 1995. Experimental study of the effect of external pressure on particle bed effective thermal properties. Fusion Technol, 27: 298–313.Google Scholar
  86. Venter, W. C., Lamprecht, E. C. 2012. Pebble bed micro model system identification. Ann Nucl Energ, 46: 1–10.Google Scholar
  87. Wang, M. J., Liu, D., Xiang, Y., Cui, S. J., Su, G. H., Qiu, S. Z., Tian, W. X. 2017. Experimental study of the helium flow characteristics in pebble-bed under the condition of CFETR’s blanket module. Prog Nucl Energ, 100: 283–291.Google Scholar
  88. Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2016. Effect of scale on the modeling of radiation heat transfer in packed pebble beds. Int J Heat Mass Tran, 101: 562–569.Google Scholar
  89. Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2017. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation. Int J Heat Mass Tran, 110: 393–405.Google Scholar
  90. Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018a. A smoothed void fraction method for CFD-DEM simulation of packed pebble beds with particle thermal radiation. Int J Heat Mass Tran, 118: 275–288.Google Scholar
  91. Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018b. Modeling effective thermal conductivity of thermal radiation for nuclear packed pebble beds. J Heat Transf, 140: 042701.Google Scholar
  92. Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018c. Particle-scale investigation of thermal radiation in nuclear packed pebble beds. J Heat Transf, 140: 092002.Google Scholar
  93. Wu, Z. X., Wu, Y. W., Tang, S. M., Liu, D., Qiu, S. Z., Su, G. H., Tian, W. X. 2018d. DEM-CFD simulation of helium flow characteristics in randomly packed bed for fusion reactors. Prog Nucl Energ, 109: 29–37.Google Scholar
  94. Yang, X. T., Gui, N., Tu, J. Y., Jiang, S. Y. 2014a. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor. Nucl Eng Des, 270: 404–411.Google Scholar
  95. Yang, X. T., Gui, N., Tu, J. Y., Jiang, S. Y. 2015. Numerical analysis of granular flows in a silo bed on flow regime characterization. PLoS One, 10: e0119155.Google Scholar
  96. Yang, X. T., Hu, W. P., Jiang, S. Y., Wong, K. K. L., Tu, J. Y. 2012. Mechanism analysis of quasi-static dense pebble flow in pebble bed reactor using phenomenological approach. Nucl Eng Des, 250: 247–259.Google Scholar
  97. Yang, X. T., Li, Y., Gui, N., Jia, X. L., Tu, J. Y., Jiang, S. Y. 2014b. Some movement mechanisms and characteristics in pebble bed reactor. Sci Technol Nucl Ins, 2014: 1–10.Google Scholar
  98. Yesilyurt, G., Hassan, Y. A. 2003. Icone11-36426 flow distribution of pebble bed high temperature gas cooled reactors using large eddy simulation. In: Proceedings of the International Conference on Nuclear Engineering, 428.Google Scholar
  99. Yin, X., Ge, L., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018. Effect of pebble size and bed dimension on the distribution of voidages in pebble bed reactor. J Comput Multiphase Flows, 10: 99–108.Google Scholar
  100. Zaccari, N., Aquaro, D. 2007. Mechanical characterization of Li2TiO3 and Li4SiO4 pebble beds: Experimental determination of the material properties and of the pebble bed effective values. Fusion Eng Des, 82: 2375–2382.Google Scholar
  101. Zhao, X., Montgomery, T., Zhang, S. J. 2015. Modeling stationary and moving pebbles in a pebble bed reactor. Ann Nucl Energy, 80: 52–61.Google Scholar
  102. Zheng, J., Wang, S., Jin, C., Chen, H. L. 2016. A measurement platform scheme and data post-processing method for thermal conductivity of Li4SiO4 pebble bed. J Fusion Energ, 35: 524–528.Google Scholar
  103. Zheng, Y. H., Stempniewicz, M. M., Chen, Z. P., Shi, L. 2018. Study on the DLOFC and PLOFC accidents of the 200 MWe pebble-bed modular high temperature gas-cooled reactor with TINTE and SPECTRA codes. Ann Nucl Energy, 120: 763–777.Google Scholar
  104. Zhou, G. M., Li, M., Liu, Q. W., Wang, S., Lv, Z., Chen, H. L., Ye, M. Y. 2015. Thermal analysis of breeder unit for helium cooled solid breeder blanket of Chinese fusion engineering test reactor. J Fusion Energ, 34: 339–345.Google Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Shengyao Jiang
    • 1
  • Jiyuan Tu
    • 1
    • 2
  • Xingtuan Yang
    • 1
  • Nan Gui
    • 1
    Email author
  1. 1.Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of EducationTsinghua UniversityBeijingChina
  2. 2.School of EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations