Advertisement

Bokashi as an Amendment and Source of Nitrogen in Sustainable Agricultural Systems: a Review.

  • Madelaine QuirozEmail author
  • Cecilia Céspedes
Review Article
  • 8 Downloads

Abstract

Integral soil fertility is managed by practices that contribute to organic matter, which improves its properties. Bokashi is an organic amendment that can be part of the tools used in sustainable soil management. This review systematizes existing information regarding the production and use of bokashi. In addition to discussing guidelines for the production and use of good-quality bokashi, it also focuses on the availability of N and microbial aspects, using compost as a reference amendment. Through this review, it was also found that (1) in order to obtain bokashi with a high N content, raw materials with a high N content must be used and, the dose of the initial C source of easy microbial assimilation should be increased. (2) Regarding the acceleration of the mineralization of the organic matter produced by the microbial inoculum, contradictory results have been obtained. Therefore, a better understanding of the interactions between the microorganisms that constitute the inoculum and the principle native microbial groups is required. (3) Few studies have evaluated the relationships between the N availability of bokashi, yield, and crop characteristics, as well as how bokashi could contribute to the fertility and availability of N when included in combination with other cultural practices.

Keywords

Sustainable soil management Soil fertility Organic matter Organic amendments 

Notes

Acknowledgments

This work was supported by Dicyt Project N° 091675QE, University of Santiago de Chile, Usach.

References

  1. [CET] (2016) 10 Centro de Educación y Tecnología. Manual de Producción Agroecológica, Publicación Serie Manuales y Cursos N° 8 INDAP, BíoBío, 204pGoogle Scholar
  2. [FAO] (2011a) Organización de las Naciones Unidas para la Alimentación y la Agricultura. Aboneras tipo bocashi. Colección “Buenas Prácticas”. Programa Extraordinario de Apoyo a la Seguridad Alimentaria y Nutricional (Food Facility) FAO/Unión Europea, ciudad de Guatemala, 13pGoogle Scholar
  3. [FAO] (2011b) Organización de las Naciones Unidas para la Alimentación y la Agricultura. Elaboración y uso del Bocashi, San Salvador, 16pGoogle Scholar
  4. [SAG]. Servicio Agrícola y Ganadero (2014) Agricultura Orgánica, Bases técnicas y situación Actual. Ministerio de Agricultura. División de Recursos Naturales Renovables, Subdepartamento de Agricultura Orgánica, Chile 257 pGoogle Scholar
  5. [TMECC] (2002) Test Methods for the Examination of Composting and Compost. In: Test Methods for the Examination of Composting and Compost. US Composting Council, Bethesda, MDGoogle Scholar
  6. Amlinger F, Gotz B, Dreher P, Geszti J, Weissteiner C (2003) Nitrogen in biowaste and yard waste compost, dynamics of mobilisation and availability, a review. Eur J Soil Biol 39:109–116CrossRefGoogle Scholar
  7. Aulinas M, Bonmati A (2008) Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua. Bioresour Technol 99:5120–5124CrossRefGoogle Scholar
  8. Badaruddin M, Meyer DW (1990) Green-manure legume effects on soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci 30:819–825CrossRefGoogle Scholar
  9. Badaruddin M, Meyer DW (1994) Grain legume effects in soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci 34:1304–1309CrossRefGoogle Scholar
  10. Balogun RB, Ogbu JU, Umeokechukwu EC, Kalejaiye-Matti RB (2016) Effective micro-organisms (EM) as sustainable components in organic farming, principles, applications and validity. In: Nandwani D (ed) Organic farming for sustainable agriculture. Springer International Publishing, Switzerland, pp 259–291CrossRefGoogle Scholar
  11. Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. Rev Bioresour Technol 100:5444–5453CrossRefGoogle Scholar
  12. Bertolí M, Terry E, Ramos D (2015) Producción y uso del abono orgánico tipo Bocashi. Una alternativa para la producción de los cultivos y la calidad de los suelos. Ediciones INCA, Mayabeque, 50pGoogle Scholar
  13. Bhatt SM, Srivastava S (2008) Lactic acid production from cane molasses by Lactobacillus delbrueckii NCIM 2025 in submerged condition, Optimization of medium component by Taguchi DOE methodology. Food Biotechnol 22:115–139CrossRefGoogle Scholar
  14. Bock E, Wagner M (2006) Oxidation of inorganic nitrogen compounds as an energy source. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes. Springer Science + Business Media, LLC, New York (NY), pp 457–495CrossRefGoogle Scholar
  15. Cerrato ME, Leblanc HA, Kameko C (2007) Potencial de mineralización de nitrógeno de Bokashi, compost y lombricompost producidos en la Universidad Earth. Tierra Tropical 3:183–197Google Scholar
  16. Chen B, Liu E, Tian Q, Yang C, Zhang Y (2014) Soil nitrogen dynamics and crop residues. A review. Agron Sustain Develop 34:429–442CrossRefGoogle Scholar
  17. Christel DM (2017) The use of bokashi as a soil fertility amendment in organic spinach cultivation. Magister thesis, University of Vermont, USA 162pGoogle Scholar
  18. Daly MJ, Stewart DPC (1999) Influence of “effective microorganisms” (EM) on vegetable production and carbon mineralization—a preliminary investigation. J Sustain Agric 14:15–25CrossRefGoogle Scholar
  19. De Vuyst L, Neysens P (2005) The sourdough microflora, biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56CrossRefGoogle Scholar
  20. Deacon JW (2006) Fungal Biology. Blacwell Publishing, Oxford 380pGoogle Scholar
  21. Dehghani R, Asadi MA, Charkhloo E, Mostafaie G, Saffari M, Mousavi GA, Pourbabaei M (2012) Identification of fungal communities in producing compost by windrow method. J Environ Prot 3:61–67CrossRefGoogle Scholar
  22. Dumbrepatil A, Adsul M, Chaudhari S (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74:333–335PubMedCrossRefPubMedCentralGoogle Scholar
  23. Emino ER, Warman PR (2004) Biological assay for compost quality. Compost Sci Util 12:342–348CrossRefGoogle Scholar
  24. Faria-Oliveir F, Diniz RHS, Godoy-Santos F, Piló FB, Mezadri H, Castro IM, Brandão RL (2015) The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In: Amer A (ed) Food production and industry. InTech, CC BY, pp 107–135Google Scholar
  25. Formowitz B, Elango F, Okumoto S, Müller T, Buerkert A (2007) The role of “effective microorganisms” in the composting of banana (Musa ssp.) residues. J. Plant Nutr Soil Sci 170:649–656CrossRefGoogle Scholar
  26. Giri B, Giang P, Kumari R, Varma A (2005) Microbial diversity in soils. In: Buscott F, Varma A (eds) Microorganisms in soils, roles in genesis and functions. Berlín, Springer Science + Business Media, pp 19–55CrossRefGoogle Scholar
  27. Gobbetti M, Corsetti A, Rossi J (1994a) The sourdough microflora. Interactions between lactic acid bacteria and yeasts, metabolism of carbohydrates. Appl Microbiol Biotechnol 41:456–460CrossRefGoogle Scholar
  28. Gobbetti M, Corsetti A, Rossi J (1994b) The sourdough microflora. Interactions between lactic acid bacteria and yeasts, metabolism of amino acid. World J Microbiol Biotechnol 10:275–279PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gong W, Yan X, Wang J, Hu T, Gong Y (2009) Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat–maize cropping system in northern China. Geoderma 149:318–324CrossRefGoogle Scholar
  30. Guerrero C, Moral R, Gómez I, Zornoza R, Arcenegui V (2007) Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries. Bioresour Technol 98:3259–3264PubMedCrossRefGoogle Scholar
  31. Hädicke O, Grammel H, Klamt S (2011) Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst Biol 5:150PubMedPubMedCentralCrossRefGoogle Scholar
  32. Higa T, Parr J (1995) Beneficial and effective microorganisms in a sustainable agriculture and environment. Technol Trends 9:1–5Google Scholar
  33. Ikeda D, Weinert E, Chang K, McGinn JM, Miller SA, Keliihoomalu C, DuPonte MW (2013) Natural farming, lactic acid bacteria. College of tropical Agricultural and Human Resources. The University of Hawai’i. SA-8, HonoluluGoogle Scholar
  34. Imhof J (2006) The phototrophic alpha-ptroteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes. Springer science + business media, LLC, New York (NY), pp 41–64CrossRefGoogle Scholar
  35. Jensen ES, Peoples MB, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crop Res 115:203–216CrossRefGoogle Scholar
  36. Jirout J, Simek M, Elhottová D (2011) Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol Biochem 43:647–656CrossRefGoogle Scholar
  37. Jusoh ML, Manaf LA, Latiff PA (2013) Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. JEnviron Health Sci Eng 10:17CrossRefGoogle Scholar
  38. Kämpfer P, Glaeser S, Parkes L, van Keulen G, Dyson P (2014) The family streptomycetaceae. In: Kämpfer P, Glaeser SP, Parkes L, Van Keulen G, Dyson P (eds) Prokaryotes. Springer-Verlag, Berlin, pp 889–1010Google Scholar
  39. Kato S, Yamada K, Fujita M, Xu HL, Katase K, Umemura H (1997) Applications of effective microorganisms in nature farming. IX. Soil fertility and plant nutrient uptake of sweet corn as affected by applications of organic fertilizer with effective microorganisms added. Annual meeting of Japanese Society of Soil Science and Plant Nutrition, April 24, Sizuoka, proceedings 43,164Google Scholar
  40. Kyan T, Shintani M, Kanda S (1999) In: Sangakkara R (ed) Kyusei nature farming and the technology of effective microorganisms, guidelines for practical use. APNAN (Asia Pacific natural agriculture network, Bangkok, Thailand) and INFRC (international nature farming research center), Atami, JapanGoogle Scholar
  41. Larimer F, Chain P, Auser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnol 22:55–61CrossRefGoogle Scholar
  42. Leblanc H, Cerrato M, Vélex L (2005) Comparación del contenido de nutrientes de Bocashis elaborados con desechos de fincas del trópico húmedo de Costa Rica. Tierra Tropical 2:149–159Google Scholar
  43. Leblanc HA, Cerrato ME, Miranda A, Valle G (2006) Determinación de la calidad de abonos orgánicos a través de bioensayos. Tierra Tropical 3:97–107Google Scholar
  44. Liang Y, Leonard JJ, Feddes JJR, McGill WB (2006) Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresour Technol 97:748–761PubMedCrossRefGoogle Scholar
  45. Maass V (2016) Bokashi mejorado con roca fosfórica y su efecto en un cultivo de perejil bajo manejo orgánico en invernadero. Universidad Mayor, Chile, Tesis Ingeniero Agrónomo 78pGoogle Scholar
  46. Madigan M, Martinko J, Bender K, Buckley DH, Stahl DA, Brock T (2015) Brock. Biology of microorganisms. Pearson education, Boston (MA) 1030pGoogle Scholar
  47. Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T (2011) Microbiology of nitrogen cycle in animal manure compost. Minireview Microbial Biotechnol 6:700–709CrossRefGoogle Scholar
  48. Masunga R, Usokwe V, Melay P, Odeh I, Singh A, Buchan D, DeNeve S (2016) Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol 101:185–193CrossRefGoogle Scholar
  49. Mayer J, Scheid S, Widmer F, Fließbach A, Oberholzer HR (2010) How effective are ‘effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl Soil Ecol 46:230–239CrossRefGoogle Scholar
  50. McNeill AM, Fillery IRP (2008) Field measurement of lupin belowground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate. Plant Soil 30:297–316CrossRefGoogle Scholar
  51. Meng L, Li W, Zhang S, Wu C, Wang K (2016a) Effects of sucrose amendment on ammonia assimilation during sewage sludge composting. Bioresour Technol 210:160–166PubMedCrossRefPubMedCentralGoogle Scholar
  52. Meng L, Li W, Zhang S, Wu C, Jiang W, Sha C (2016b) Effect of different extra carbon sources on nitrogen loss control and the change of bacterial populations in sewage sludge composting. Ecol Eng 94:238–243CrossRefGoogle Scholar
  53. Moreno J, Mormeneo M (2011) Microbiología y bioquímica del proceso de compostaje. In: Moreno J, Moral R (eds) Compostaje. Ediciones Mundi-Prensa, Madrid, pp 111–140Google Scholar
  54. Murillo-Amador B, Morales-Prado LE, Troyo-Diéguez E, Córdoba-Matson MV, Hernández-Montiel LG, Rueda-Puente EO, Nieto-Garibay A (2015) Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Front Plant Sci 6:549PubMedPubMedCentralCrossRefGoogle Scholar
  55. Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8(11):e79512.  https://doi.org/10.1371/journal.pone.0079512 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Olsen DJR, Endelman JB, Jacobson AR, Reeve JR (2015) Compost carryover, nitrogen, phosphorus and FT-IR analysis of soil organic matter. Nutr Cycl Agroecosyst 101:317–331CrossRefGoogle Scholar
  57. Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3 Biotech 2:127–134CrossRefGoogle Scholar
  58. Pérez A, Céspedes C, Núñez, P (2008) Physical, chemical and biological characterization of applied organic amendments in crop production in Dominican Republic. J Soil Sci Plant Nutr 4:10–29Google Scholar
  59. Pugh GJF (1974) Terrestrial fungi. In: Dickinson CH, Pugh GJF (eds) Biology of plant litter decomposition. Academic Press, London, pp 303–336CrossRefGoogle Scholar
  60. Quiroz M, Flores F (2018) Nitrogen availability, maturity and stability of bokashi-type fertilizers elaborated with different feedstocks of animal origin. Arch Agron Soil Sci:1–9.  https://doi.org/10.1080/03650340.2018.1524138
  61. Quiroz M, Varnero MT (2015) Microbiological activity and N transformations in a soil subjected to aggregate extraction amended with pig slurry. Chilean J Agric Res 75:350–356CrossRefGoogle Scholar
  62. Ramos D, Terry E, Soto F, Cabrera JA (2014) Bocashi, organic manure elaborated starting from residuals of bananas production in Bocas del Toro, Panama. Cultivos Tropicales 35:90–97Google Scholar
  63. Restrepo J, Hensel J (2015) El A, B, C de la agricultura orgánica, fosfitos y panes de piedra. Manual práctico, Santiago de Cali 399pGoogle Scholar
  64. Robertson GP, Groffman MP (2015) Nitrogen transformations. In: Paul E (ed) Soil microbiology, ecology, and biochemistry. Elsevier Inc., Amsterdam, pp 435–446Google Scholar
  65. Ryals R, Kaiser M, Torn MS, Berhe AA, Silver WL (2014) Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biol Biochem 68:52–61CrossRefGoogle Scholar
  66. Sasikala C, Ramana CV (1998) Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. Adv Microb Physiol 39:339–377PubMedCrossRefGoogle Scholar
  67. Schenck zu Schweinsberg-Mickan M, Müller T (2009) Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic-matter decomposition, and plant growth. J Plant Nutr Soil Sci 172:704–712CrossRefGoogle Scholar
  68. Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57:413–420PubMedCrossRefPubMedCentralGoogle Scholar
  69. Schröder J (2005) Revisiting the agronomic benefits of manure, a correct assessment and exploitation of its fertilizer value spares the environment. Bioresour Technol 96:253–261PubMedCrossRefPubMedCentralGoogle Scholar
  70. Scotti R, Bonanomi G, Scelza R, Zoina A, Rao MA (2015) Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr 15:333–352Google Scholar
  71. Sharma A, Sharma R, Arora A, Shah R, Singh A, Pranaw K, Nain L (2014) Insights into rapid composting of paddy straw augmented with efficient microorganism consortium. Int J Recycl Org Waste Agric 3:54CrossRefGoogle Scholar
  72. Shindo H, Nishio T (2005) Immobilization and remineralization of N following addition of wheat straw into soil, determination of gross N transformation rates by 15N-ammonium isotope dilution technique. Soil Biol Biochem 37:425–432CrossRefGoogle Scholar
  73. Silva JW, Rodríguez W, Rosas G (2014) Caracterización física y química de bokashi y lombricompost y su evaluación agronómica en plantas de maíz. Ingenierías Amazonia 7:5–16Google Scholar
  74. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms, a new dimension for sustainable agriculture and environmental development. Review Agric Ecosyst Environ 140:339–353CrossRefGoogle Scholar
  75. Singh S, Singh B, Kumar B, Kumar A, Nain L (2012) Microbes in agrowaste management for sustainable agriculture. In: Satyanarayana T, Narain B, Prakash A (eds) Microorganisms in sustainable agriculture and biotechnology. Springer Science + Business Media BV, Dordrecht, pp 127–151CrossRefGoogle Scholar
  76. Stadie J, Gulitz A, Ehrmann M, Vogel RF (2013) Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol 35:92–98PubMedCrossRefGoogle Scholar
  77. Sutton M, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161PubMedCrossRefGoogle Scholar
  78. Tian W, Sun Q, Xu D (2013) Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis. Int Biodeterior Biodegradation 78:58–66CrossRefGoogle Scholar
  79. Tiquia SM (2002) Microbial transformation of nitrogen during composting. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, New York (NY), pp 237–246CrossRefGoogle Scholar
  80. Tiquia SM (2005a) Microbial community dynamics in manure compost based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26:1101–1113PubMedCrossRefPubMedCentralGoogle Scholar
  81. Tiquia SM (2005b) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99:816–828PubMedCrossRefPubMedCentralGoogle Scholar
  82. Watanabe K, Nagao N, Toda T, Kurosawa N (2009) The dominant bacteria shifted from the order “Lactobacillales” to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent. World J Microbiol Biotechnol 25:803–811CrossRefGoogle Scholar
  83. Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247CrossRefGoogle Scholar
  84. Wezel A, Casagrande M, Celette F (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Develop 34:1–20CrossRefGoogle Scholar
  85. Xu H (2001) Effects of a microbial inoculant and organic fertilizers on the growth, photosynthesis and yield of sweet corn. J Crop Prod 3:183–214CrossRefGoogle Scholar
  86. Xu H, Wang R, Mridha A (2001) Effects of organic fertilizers and a microbial inoculant on leaf photosynthesis and fruit yield and quality of tomato plants. J Crop Prod 3:173–182CrossRefGoogle Scholar
  87. Yamada K, Xu HL (2001) Properties and applications of an organic fertilizer inoculated with effective microorganisms. J Crop Prod 3:255–268CrossRefGoogle Scholar
  88. Yamamoto N, Otawa K, Nakai Y (2010) Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting. Microb Ecol 60:807–815PubMedCrossRefGoogle Scholar
  89. Zaman A, Ahmed M, Gogoi P (2010) Effect of bokashi on plant growth, yield and essential oil quantity and quality in patchouli (Pogostemon Cablin Benth.). Biosci Biotech Res Asia 7(1):383–387Google Scholar
  90. Zebarth BJ, Drury CF, Tremblay N, Cambouris AN (2009) Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada, a review. Can J Soil Sci 89:113–132CrossRefGoogle Scholar
  91. Zucco MA, Walters SA, Chong SK, Klubek BP, Masabni JG (2015) Effect of soil type and vermicompost applications on tomato growth. Int J Recyc Org Waste Agric 4:135–141CrossRefGoogle Scholar
  92. Zucconi F, Monaco A, Forte A, Bertoldi M (1985) Phytotoxins during the stabilization of organic matter. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier, London, pp 73–85Google Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  1. 1.Universidad de Santiago de ChileSantiagoChile
  2. 2.Instituto de Investigaciones Agropecuarias INIA-QuilamapuChillánChile

Personalised recommendations