Advertisement

Biological Properties and Greenhouse Gas Emissions in Two Different Land Uses of an Aquand

  • Nelson Beas
  • Felipe Zúñiga
  • Dorota Dec
  • José Dörner
  • Óscar Thiers
  • Óscar Martínez
  • Cristina Muñoz
  • Neal Stolpe
  • Leandro PaulinoEmail author
Research Article
  • 5 Downloads

Abstract

Aquands have a shallow profile and an impermeable layer that restricts water movement. Land use changes alter the physical structure of Aquands and soil air fluxes. The impacts of land use changes on the soil’s biological activity, nutrients’ dynamics, and the production of greenhouse gases (GHG) have not been investigated in Aquands. We investigated an Aquand soil under a second-growth native forest (sNF) and unmanaged naturalized grassland (NG) in southern Chile (41° S). Soil samples from each land use were taken in different seasons and analyzed in a laboratory to determine the potential soil respiration, N mineralization, denitrification, and nitrate reductase activity. GHG fluxes (CO2, N2O, and CH4) were collected from static chambers on the soil’s surface. Soil respiration rates were higher in the sNF, but were temporally variable in NG. Nitrogen dynamics was not as clearly influenced by soil use changes. CO2 emissions varied seasonally and were always higher in the NG during the summer, suggesting a dependency on temperature and the changing thermal profile, while the N2O and CH4 in Aquands showed no evident spatiotemporal effects related to the historical land use change. Seasonal dynamics of water and air in the profile of Aquands are relevant for the biological processes related to C and N transformations. Land use change amplifies the production of CO2 under favorable conditions, but the biological activity of soil and nutrient dynamics of Aquands respond more to changes in soil organic matter quality than to seasonal variation in the edaphic environment.

Keywords

Nothofagus forest Naturalized grassland Soil respiration N mineralization Denitrification Waterlogging 

Notes

Acknowledgements

Nelson Beas thanks the Scholarship V/2015/741 from Universidad de Guadalajara, Mexico, which made his Master’s program at the Universidad de Concepción, Chile, possible. Finally, we are also grateful for the hospitality of the landowners Don Alfredo and Sra. Elba, and Katherine Rebolledo for her technical support on analytical determinations in the laboratory.

Funding Information

This research project received funding from the Fondecyt grant 1130546.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alef K (1995a) Nitrogen mineralization in soils. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 235–237Google Scholar
  2. Alef K (1995b) Assay of dissimilatory nitrate reductase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 283–284Google Scholar
  3. Besoain E (1985) Los suelos. In: Tosso EJ (ed) Suelos volcánicos de Chile. Ministry of Agriculture, Santiago 723 pGoogle Scholar
  4. Butterbach-Bahl K, Dannenmann M (2011) Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr Opin Environ Sustain 3(5):389–395CrossRefGoogle Scholar
  5. Chen W, Wolf B, Zheng X, Yao Z, Butterbach-Bahl K, Brüggemann N, Han S, Liu C, Han X (2013) Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmos Environ 64:141–149CrossRefGoogle Scholar
  6. Dalal R, Allen D (2008) Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56:369–407CrossRefGoogle Scholar
  7. De Bruijn AMG, Butterbach-Bahl K, Blagodatsky S, Grote R (2009) Model evaluation of different mechanisms driving freeze–thaw N2O emissions. Agric Ecosyst Environ 133:196–207CrossRefGoogle Scholar
  8. Dec D, Zúñiga F, Thiers O, Paulino L, Valle S, Villagra V, Tadich I, Horn R, Dörner J (2017) Water and temperature dynamics of Aquands under different uses in southern Chile. J Soil Sci Plant Nutr 17(1):141–154Google Scholar
  9. Dörner J, Dec D, Peng X, Horn R (2009) Efecto del cambio de uso en la estabilidad de la estructura y la función de los poros de un andisol (typic hapludand) del sur de Chile. J Soil Sci Plant Nutr 9(3):190–209Google Scholar
  10. Dörner J, Dec D, Thiers O, Paulino L, Zúñiga F, Valle S, Martinez O, Horn R (2016) Spatial and temporal variability of physical properties of Aquands under different land uses in southern Chile. Soil Use Manag 32:411–421CrossRefGoogle Scholar
  11. Dörner J, Horn R, Dec D, Wendroth O, Fleige H, Zúñiga F (2017) Land use dependent change of soil mechanical strength and resilience of a shallow volcanic ash soil in southern Chile. Soil Sci Soc Am J 81.  https://doi.org/10.2136/sssaj2016.11.0378
  12. Dube F, Zagal E, Stolpe N, Espinosa M (2009) The influence of land-use change on the organic carbon distribution and microbial respiration in a volcanic soil of the Chilean Patagonia. For Ecol Manag 257:1695–1704CrossRefGoogle Scholar
  13. Hackl E, Bachmann G, Zechmeister-Boltenstern S (2004) Microbial nitrogen turnover in soils under different types of natural forest. For Ecol Manag 188:101–112CrossRefGoogle Scholar
  14. Hagerty S, van Groenigen K, Allison S, Hungate B, Schwartz E, Koch G, Kolka R, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Chang 4:903–906CrossRefGoogle Scholar
  15. Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363CrossRefGoogle Scholar
  16. Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792CrossRefGoogle Scholar
  17. Hube S, Alfaro M, Scheers C, Brunk C, Ramírez L, Rowlings D, Grace P (2017) Effect of nitrification and urease inhibitors on nitrous oxide and methane emissions from an oat crop in a volcanic ash soil. Agric Ecosyst Environ 238:46–54CrossRefGoogle Scholar
  18. Huygens D, Boeckx P, Templer P, Paulino L, Van Cleemput O, Oyarzún C Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geosciences, 1(8):543–548Google Scholar
  19. Linn D, Doran J (1984) Aerobic and anaerobic microbial populations in no-till and plowed soils. Soil Sci Soc Am J 48:794–799CrossRefGoogle Scholar
  20. Longeri L, Etchevers J, Venegas J (1979) Metodología de perfusión para estudios de nitrificación en suelos. Cienc Investig Agrar 6(4):295–299CrossRefGoogle Scholar
  21. Luo L, White RE, Ball PR, Tillman RW (1996) Measuring denitrification activity in soils under pasture: optimizing conditions for the short-term denitrification enzyme assay and effects of soil storage on denitrification activity. Soil Biol Biochem 28(3):409–417CrossRefGoogle Scholar
  22. Martins C, Nazaries L, Macdonald C, Anderson I, Singh B (2015) Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol Biochem 86:5–16CrossRefGoogle Scholar
  23. Moinet G, Cieraad E, Hunt J, Fraser A, Turnbull M, Whitehead D (2016) Soil heterotrophic respiration is insensitive to change in soil water content but related to microbial access to organic matter. Geoderma 274:68–78CrossRefGoogle Scholar
  24. Morales E (2005) Diseño experimental a través del análisis de varianza y modelo de regresión lineal. Editorial Consultora Carolina. Valdivia, Chile, 248Google Scholar
  25. Muñoz C, Paulino L, Monreal C, Zagal E (2010) Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chil J Agric Res 70(3):485–497CrossRefGoogle Scholar
  26. Novoa R, Villaseca R (1989) Agroclimatic map of Chile. (In Spanish). Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura, Santiago, ChileGoogle Scholar
  27. Robarge WP, Edwards A, Johnson B (1983) Water and waste water analysis for nitrate via nitration of salicylic acid. Commun Soil Sci Plant Anal 14(12):1207–1215CrossRefGoogle Scholar
  28. Rowell DL (1994) Soil science: methods and applications. Longman Scientific & Technical, SingaporeGoogle Scholar
  29. Sadzawka A, Carrasco M, Grez R, Mora M, Flores H (2006) Métodos de análisis recomendados para los suelos de Chile. Revisión 2006. Instituto de Investigaciones Agropecuarias, SantiagoGoogle Scholar
  30. Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim D-G, Zaman M, Tillman RW (2013) Denitrification and N2O: N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Sci Total Environ 465:173–195CrossRefGoogle Scholar
  31. Sandoval M, Dörner J, Seguel O, Cuevas J, Rivera D (2012) Métodos de Análisis Físicos de Suelos. Universidad de Concepción. Publicaciones Departamento de Suelos y Recursos Naturales, Chillán, Chile, número 5, p 80Google Scholar
  32. Singh SN, Tyagi L (2009) In: Sheldon AI, Barnhart EP (eds) Nitrous oxide emissions research progressNitrous oxide: sources, sinks and mitigation strategies. Nova Science Publisher, New York, pp 127–150Google Scholar
  33. Thiers O, Gerding V, Lara A, Echeverría C (2007) Variación de la capa freática en un suelo Ñadi bajo diferentes tipos vegetacionales, X Región, Chile. In: Gonda H, Davel M, Loguercio G, Picco OA (eds) Libro de actas de eco reuniones. Primera reunión sobre forestación en la Patagonia EcoForestar 2007. Centro de Investigación y Extensión Forestal Andino Patagónica (CIEFAP), Esquel, pp 259–266Google Scholar
  34. Van Cleemput O, Boeckx P (2002) Measurement of greenhouse gas fluxes. In Lal R (ed) Encyclopedia of Soil Science. Marcel Dekker. New York, pp 626–629Google Scholar
  35. Wakelin SA, Gerard E, van Koten C, Banabas M, O’Callaghan M, Nelson PN (2016) Soil physicochemical properties impact more strongly on bacteria and fungi than conversion of grassland to oil palm. Pedobiologia 59:83–91CrossRefGoogle Scholar
  36. Wan S, Luo Y (2003) Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob Biogeochem Cycles 17(2):1054–1065CrossRefGoogle Scholar
  37. Yanardag I, Zornoza R, Bastida F, Büyükkiliç-Yanardag A, Garcia C, Faz A, Mermut A (2017) Native soil organic matter conditions the response of microbial communities to organic inputs with different stability. Geoderma 295(1–9):1–9CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  • Nelson Beas
    • 1
  • Felipe Zúñiga
    • 2
    • 3
  • Dorota Dec
    • 2
    • 4
  • José Dörner
    • 2
    • 4
  • Óscar Thiers
    • 2
    • 5
  • Óscar Martínez
    • 2
    • 6
  • Cristina Muñoz
    • 7
  • Neal Stolpe
    • 7
  • Leandro Paulino
    • 2
    • 7
    Email author
  1. 1.Facultad de Agronomía, Programa de Magíster en Ciencias Agronómicas Mención Suelos y Recursos NaturalesUniversidad de ConcepciónChillánChile
  2. 2.Centro de Investigación en Suelos Volcánicos (CISVo)Universidad Austral de ChileValdiviaChile
  3. 3.Facultad de Ciencias Agrarias, Escuela de Graduados, Campus Isla TejaUniversidad Austral de ChileValdiviaChile
  4. 4.Facultad de Ciencias Agrarias, Instituto de Ingeniería Agraria y Suelos, Campus Isla TejaUniversidad Austral de ChileValdiviaChile
  5. 5.Facultad de Ciencias Forestales, Instituto de Bosques y Sociedad, Campus Isla TejaUniversidad Austral de ChileValdiviaChile
  6. 6.Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Campus Isla TejaUniversidad Austral de ChileValdiviaChile
  7. 7.Facultad de Agronomía, Departamento de Suelos y Recursos NaturalesUniversidad de ConcepciónChillánChile

Personalised recommendations