Leaching of Base Cations from Dairy Slurry Applied to an Agricultural Volcanic Ash Soil

  • Jaime G. CuevasEmail author
  • Madelaine Quiroz
  • José Dörner
Research Article


Studies regarding leaching in soils have focused on the main nutrients and trace metals released. There is a lack of knowledge regarding base cations’ behavior when applied to volcanic-ash soils as dairy slurry. Our objective was to study the movement of elements through a limed pasture’s soil using the in situ technique of suction lysimeters, installed at 50-cm depths. Moreover, we used soil moisture sensors to track the movement of the soil solution up to the sampling depth. Calcium and magnesium water samples showed no significant differences in concentrations between the control and fertilized treatments, while sodium concentrations were clearly higher in the fertilized plots. Calcium and sodium exports were highest in the fertilized plots. We concluded that although lime application is recommended for mitigating aluminum toxicity and high phosphorus adsorption in acidic soils, in this case, it produced high Ca2+ losses that compounded those attributable to the fertigation of dairy slurry. It also induced Na+ losses in deeper soil zones when slurry was applied at doses higher than the pasture requirements and at inadequate seasons. Therefore, adequate management practices are needed to balance the beneficial effects of liming with dairy slurry applications.


Andisol Ceramic cups Exchange complex Soil moisture sensors Vadose zone 



We thank the Santa Rosa Experimental Station’s staff for their help, especially the Administrators Rodrigo Barriga and Carlos Villagra. Additional acknowledgements go to Mr. Rodolfo Saldaña from INIA Remehue for many useful indications, and Prof. Dante Pinochet for helpful advice. The Garden Unit of the Universidad Austral de Chile also contributed with grass maintenance. Finally, we would also like to acknowledge the valuable comments made by two anonymous reviewers.


Funding was provided by the Fondecyt grant 1110156. INIA hosted the first author during the phase of data collection. Logistic support was provided by Mr. César Leiva and César Lemus.


  1. [AOAC]. Association of Analytical Communities (1996) Official methods of analysis of AOAC International. 16th ed. AOAC International, Gaithersburg, MD, USA, 1995 pGoogle Scholar
  2. [CIREN]. Centro de Información de Recursos Naturales (2003) Descripciones de Suelos, Materiales y Símbolos. Estudio Agrológico X Región, Publicación 123. CIREN, Santiago, Chile, 200 pGoogle Scholar
  3. [INN]. Instituto Nacional de Normalización (2005) Agua Potable- Parte 1-Requisitos. Norma Chilena Oficial NCh409/1.Of2005. Santiago, Chile, 15 pGoogle Scholar
  4. [ISO]. International Organization for Standardization (1998) 14911:1998 water quality — determination of dissolved Li+, Na+, NH4 +, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using ion chromatography — method for water and waste water. International Organization for Standardization, Geneva, 18 pGoogle Scholar
  5. [WRB]. World Reference Base for Soil Resources (2006) A framework for international classification, correlation and communication. 2nd ed. World Soil Resources Reports No. 103. FAO, Rome, 145 pGoogle Scholar
  6. Alfaro M, Salazar F, Iraira S, Teuber N, Villarroel D, Ramírez L (2008) Nitrogen, phosphorus and potassium losses in a grazing system with different stocking rates in a volcanic soil. Chil J Agr Res 68:146–155CrossRefGoogle Scholar
  7. Cuevas JG, Quiroz M (2019) Screening of native and exotic tree species in Chile for element absorption from dairy slurry. J Soil Sci Plant Nutr 19Google Scholar
  8. Decagon Devices (2017) 5TM water content and temperature sensors. Decagon Devices, Inc., 2365 NE Hopkins Court, Pullman, WA 99163, USA, 17 pGoogle Scholar
  9. Dörner J, Dec D, Peng X, Horn R (2010) Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma 159:189–197CrossRefGoogle Scholar
  10. Dörner J, Huertas J, Cuevas JG, Leiva C, Paulino L, Arumí JL (2015) Water content dynamics in a volcanic ash soil slope in southern Chile. J Plant Nutr Soil Sci 178:693–702CrossRefGoogle Scholar
  11. Escudey M, Förster JE, Becerra JP, Quinteros M, Torres J, Arancibia N, Galindo G, Chang AC (2007) Disposal of domestic sludge and sludge ash on volcanic soils. J Hazard Mater 139:550–555CrossRefGoogle Scholar
  12. González-Reyes A, Muñoz A (2013) Cambios en la precipitación de la ciudad de Valdivia (Chile) durante los últimos 150 años. Bosque 34:200–213CrossRefGoogle Scholar
  13. Hopmans JW, van Genuchten MT (2005) Vadose Zone: Hydrological Processes. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier Ltd., Oxford, pp 209–216CrossRefGoogle Scholar
  14. Huertas J, Cuevas JG, Paulino L, Salazar F, Arumí JL, Dörner J (2016) Dairy slurry application to grasslands and groundwater quality in a volcanic soil. J Soil Sci Plant Nutr 16:745–762Google Scholar
  15. Huygens D, Boeckx P, Templer P, Paulino L, Van Cleemput O, Oyarzún C, Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat Geosci 1:543–548CrossRefGoogle Scholar
  16. Jahan M, Amiri MB (2018) Optimizing application rate of nitrogen, phosphorus and cattle manure in wheat production: an approach to determine optimum scenario using response-surface methodology. J Soil Sci Plant Nutr 18:13–26Google Scholar
  17. Krstic D, Djalovic I, Nikezic D, Bjelic D (2012) Chapter 13: aluminium in acid soils: chemistry, toxicity and impact on maize plants. In: A. Aladjadjiyan (ed) Food production - approaches, Challenges and Tasks. Intechopen, London, pp 231–242Google Scholar
  18. Lord EI, Shepherd MA (1993) Developments in the use of porous ceramic cups for measuring nitrate leaching. J Soil Sci 44:435–449CrossRefGoogle Scholar
  19. Luzio W, Casanova M (eds) (2006) Avances en el conocimiento de los suelos de Chile. Universidad de Chile y Servicio Agrícola y Ganadero (SAG), Santiago, Chile, 393 pGoogle Scholar
  20. Molina M, Fuentes R, Calderón R, Escudey M, Avendaño K, Gutiérrez M, Chang AC (2007) Impact of forest fire ash on surface charge characteristics of Andisols. Soil Sci 172:820–834CrossRefGoogle Scholar
  21. Mora ML, Schnettler B, Demanet R (1999) Effect of liming and gypsum on soil chemistry, yield and mineral composition of ryegrass grown in an acidic Andisol. Commun Soil Sci Plant Anal 30:1251–1266CrossRefGoogle Scholar
  22. Neira MA (2006) Dureza en aguas de consumo humano y uso industrial, impactos y medidas de mitigación. Estudio de caso: Chile. Memoria para optar al título de Ingeniero Civil. Universidad de Chile, Santiago, 89 pGoogle Scholar
  23. Pizarro C, Escudey M, Gacitúa M, Fabris JD (2018) Iron-bearing minerals from soils developing on volcanic materials from Southern Chile: application in heterogeneous catalysis. J Soil Sci Plant Nutr 18:668–693Google Scholar
  24. Sadzawka A, Carrasco M, Grez R, Mora M, Flores H, Neaman A (2006) Métodos de análisis recomendados para los suelos de Chile. Serie Actas INIA No. 34. INIA, Santiago, Chile, 164 pGoogle Scholar
  25. Sadzawka A, Carrasco M, Demanet R, Flores H, Grez R, Mora M, Neaman A (2007) Métodos de análisis de tejidos vegetales. 2ª ed. Serie Actas INIA No. 40. INIA, Santiago, Chile, 139 pGoogle Scholar
  26. Salazar FJ, Dumont JC, Chadwick D, Saldaña R, Santana M (2007) Characterization of dairy slurry in southern Chile farms. Agr Tec 67:155–162Google Scholar
  27. Salazar F, Martínez-Lagos J, Alfaro M, Misselbrook T (2012) Low nitrogen leaching losses following a high rate of dairy slurry and urea application to pasture on a volcanic soil in Southern Chile. Agric Ecosyst Environ 160:23–28CrossRefGoogle Scholar
  28. Schön W, Mittermayr F, Leis A, Mischak I, Dietzel M (2016) Temporal and spatial variability of chemical and isotopic composition of soil solutions from cambisols - field study and experiments. Sci Total Environ 572:1066–1079CrossRefGoogle Scholar
  29. Silva P, Silva H, Garrido M, Acevedo E (2015) Manual de estudio y ejercicios relacionados con el contenido de agua en el suelo y su uso por los cultivos. Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile, 86 pGoogle Scholar
  30. Tosso J (ed) (1985) Suelos volcánicos de Chile. Instituto de Investigaciones Agropecuarias, Santiago, Chile, 712 pGoogle Scholar
  31. Valenzuela E, Godoy R, Almonacid L, Barrientos M (2012) Calidad microbiológica del agua de un área agrícola-ganadera, centro sur de Chile y su posible implicancia en la salud humana. Rev Chil Infectol 29:628–634CrossRefGoogle Scholar
  32. Vergara P (2011) Análisis microbiológico y químico de la calidad de agua a escala regional, en terrenos agrícola-ganaderos del centro-sur de chile. Tesis, Facultad de Ciencias, Escuela de Química y Farmacia, Universidad Austral de Chile, Valdivia, 127 pGoogle Scholar
  33. Wang Q, Cameron K, Buchan G, Zhao L, Zhang EH, Smith N, Carrick S (2012) Comparison of lysimeters and porous ceramic cups for measuring nitrate leaching in different soil types. New Zeal J Agr Res 55:333–345CrossRefGoogle Scholar
  34. Webster CP, Shepherd MA, Goulding KWT, Lord E (1993) Comparisons of methods for measuring the leaching of mineral nitrogen from arable land. Eur J Soil Sci 44:49–62CrossRefGoogle Scholar
  35. Whalen JK, Chang C, Clayton GW, Carefoot JP (2000) Cattle manure amendments can increase the pH of acidic soils. Soil Sci Soc Am J 64:962–966CrossRefGoogle Scholar
  36. Zarabi M, Jalali M (2012) Leaching of nitrogen and base cations from calcareous soil amended with organic residues. Environ Technol 33:1577–1588CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  • Jaime G. Cuevas
    • 1
    • 2
    Email author
  • Madelaine Quiroz
    • 3
  • José Dörner
    • 2
    • 4
  1. 1.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  2. 2.Centro de Investigación en Suelos Volcánicos (CISVo)Universidad Austral de ChileValdiviaChile
  3. 3.Departamento de Gestión AgrariaUniversidad de Santiago de ChileSantiagoChile
  4. 4.Instituto de Ingeniería Agraria y SuelosUniversidad Austral de ChileValdiviaChile

Personalised recommendations