Advertisement

Factors Affecting Arbuscular Mycorrhizal Fungi Spore Density in the Chilean Mediterranean-Type Ecosystem

  • Patricia Silva-FloresEmail author
  • C. Guillermo Bueno
  • José Neira
  • Götz Palfner
Research Article
  • 2 Downloads

Abstract

Arbuscular mycorrhizal fungi (AMF) are highly important for plant communities in dry or seasonally dry ecosystems, such as the South American Mediterranean-type ecosystem (MTE), considered a biodiversity hotspot. While AMF hold potential for sustainable MTE management and conservation, they have been under investigated on this ecosystem and little is known about AMF spore bank dynamics. In this study, we analyzed the effect of physico-chemical soil factors, phytobiont species, and seasonality on the AMF spore soil density in two sclerophyllous forests (Malloa and San Vicente). We sampled soil once per season during 1 year and beneath four representative tree species for each site. The results show a strong season effect at both sites, while physical-chemical parameters differed between sites. At Malloa, clay content and electrical conductivity were positively correlated with spore density, while available phosphorous showed a negative correlation. At San Vicente, clay content and total nitrogen were positively correlated with spore density, while soil organic matter showed a negative effect. Overall, spore number reached a minimum value in winter and higher values during the growing season at both sites. These results indicate a strong regulation of AMF spore density by seasonal climate, while physico-chemical soil properties exert a host-independent but site-specific effect in both forests.

Keywords

Mycorrhiza Sclerophyllous forest Chilean Matorral Seasonality Spore bank Biodiversity hotspot 

Notes

Acknowledgements

We thank to Marcelo Rivera and Raúl Riquieros for the valuable assistance during field work and to Ioannes Oses and Gerson Valdés for their help in laboratory work during their internships. Finally, we also want to thank Paola Miranda of Tremonte Vineyard for facilitating field work.

Funding Information

P.S.F. was partially funded by the National Doctorate Grant No. 21140639 of CONICYT and CONICYT Regional/CEAF/R08I1001. P.S.F. also thanks the support of the project EDPG LPR-161 of the Postgraduate Direction of the University of Concepción. C.G.B was funded by grants from the Estonian Research Council (IUT 20-28) and the European Regional Development Fund (Centre of Excellence EcolChange).

References

  1. Aliasgharzadeh N, Rastin SN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122CrossRefGoogle Scholar
  2. Arista A, Arroyo J, Berjano R, Jiménez-Lobato V, Jiménez-López J, López-Jurado J, Olmedo-Vicente E, Rodríguez-Castaneda N, Sánchez M, Simón-Porcar V, Vilà M, Picó F, Lloret F, Márquez-Corro J, The XIV MEDECOS, Consortium XA (2017) Present and future of ecological and evolutionary research in Mediterranean-type ecosystems: conclusions from the last International Mediterranean Ecosystems Conference. Am J Bot 104:1777–1782CrossRefGoogle Scholar
  3. Armesto J, Arroyo M, Hinojosa L (2007) The Mediterranean environment of Central Chile. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, Inc., New York, pp 184–199Google Scholar
  4. Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A, Giovannetti M (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–294CrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 6:1–48Google Scholar
  6. Bencherif K, Boutekrabt A, Fontaine J, Laruelle F, Dalpè Y, Anissa LHS (2015) Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulate Vahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ 533:488–494CrossRefGoogle Scholar
  7. Benedetti S, Balocchi F, Hormazábal M (2018) Hongos micorrícicos arbusculares (HMA) asociados a poblaciones naturales de Peumus boldus en Chile Central. Gayana Bot 75:431–437Google Scholar
  8. Blake GR, Hartge KH (1986a) Particle density, in: Methods of soil analysis. Part I. Physical and mineralogical methods. Agronomy Monograph No 9 (2nd Ed). ASA and SSSA. pp. 377–382Google Scholar
  9. Blake GR, Hartge KH (1986b) Bulk density, in: Methods of soil analysis. Part I. Physical and mineralogical methods. Agronomy Monograph No 9 (2nd Ed). ASA and SSSA. pp. 363–375Google Scholar
  10. Blume H-P, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2016) Scheffer/Schachtschabel Soil Science. Springer Berlin Heidelberg, Berlin, Heidelberg 630 pCrossRefGoogle Scholar
  11. Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54:464–465CrossRefGoogle Scholar
  12. Carvalho LM, Correia PM, Ryel RJ, Martins-Loucao MA (2003) Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities. Plant Soil 251:227–236CrossRefGoogle Scholar
  13. Cornejo P, Rubio R, Borie F (2009) Mycorrhizal propagule persistence in a succession of cereals in a disturbed and undisturbed andisol fertilized with two nitrogen sources. Chil J Agric Res 69:426–434CrossRefGoogle Scholar
  14. Cuenca G, Lovera M (2010) Seasonal variation and distribution at different soil depths of arbuscular mycorrhizal fungi spores in a tropical sclerophyllous forest. Botany 88:54–64CrossRefGoogle Scholar
  15. de Oliveira AN, de Oliveira LA (2010) Influence of edapho-climatic factors on the sporulation and colonization of arbuscular mycorrhizal fungi in two Amazonian native fruit species. Brazilian Arch Biol Technol 53:653–661CrossRefGoogle Scholar
  16. Escudero V, Mendoza R (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299CrossRefGoogle Scholar
  17. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244CrossRefGoogle Scholar
  18. Guadarrama P, Álvarez-Sánchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8:267–270CrossRefGoogle Scholar
  19. Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, von Röpenack-Lahaye E, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife 6:1–33CrossRefGoogle Scholar
  20. Krishnamoorthy R, Kim K, Kim C, Sa T (2014) Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol Biochem 72:1–10CrossRefGoogle Scholar
  21. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130CrossRefGoogle Scholar
  22. López-Sánchez ME, Honrubia M (1992) Seasonal variation of vesicular-arbuscular mycorrhizae in eroded soils from southern Spain. Mycorrhiza 2:33–39CrossRefGoogle Scholar
  23. Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695CrossRefPubMedCentralGoogle Scholar
  24. Marín C, Aguilera P, Oehl F, Godoy R (2017) Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J Soil Sci Plant Nutr 17:966–984CrossRefGoogle Scholar
  25. McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30(13):1639–1646CrossRefGoogle Scholar
  26. Mohammad MJ, Hamad SR, Malkawi HI (2003) Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ 53:409–417CrossRefGoogle Scholar
  27. Mohammad A, Mitra B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249CrossRefGoogle Scholar
  28. Muthukumar T, Udaiyan K (2002) Seasonality of vesicular-arbuscular mycorrhizae in sedges in a semi-arid tropical grassland. Acta Oecol 23:337–347CrossRefGoogle Scholar
  29. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  30. Neuenkamp L, Prober SM, Price JN, Zobel M, Standish RJ (2018) Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol.  https://doi.org/10.1016/j.funeco.2018.05.004
  31. Orshan G (1989) Plant pheno-morphological studies in Mediterranean type ecosystems, Geobotany, 12. Kluwer Academic Publishers, Dordrecht 404 pCrossRefGoogle Scholar
  32. Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436CrossRefGoogle Scholar
  33. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/ Google Scholar
  34. Ravnskov S, Larsen J, Olsson PÅLA, Jakobsen I (1999) Effects of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517–524CrossRefGoogle Scholar
  35. Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531CrossRefGoogle Scholar
  36. Sadzawka A, Carrasco MA, Grez R, Mora MDLL, Flores H, Neaman A (2006) Métodos de análisis recomendados para los suelos de Chile. Revision 2006., Serie Actas-Instituto de Investigaciones Agropecuarias. Instituto de Investigaciones Agropecuarias, Serie Actas INIA No 34, Santiago, 164 pGoogle Scholar
  37. Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460CrossRefGoogle Scholar
  38. Sivakumar N (2013) Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Ann Microbiol 63:151–160CrossRefGoogle Scholar
  39. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier Ltd, London 787 pGoogle Scholar
  40. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159CrossRefGoogle Scholar
  41. Underwood EC, Viers JH, Klausmeyer KR, Cox RL, Shaw MR (2009) Threats and biodiversity in the mediterranean biome. Divers Distrib 15:188–197CrossRefGoogle Scholar
  42. van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423CrossRefPubMedCentralGoogle Scholar
  43. Varela-Cervero S, López-García Á, Barea JM, Azcón-Aguilar C (2016) Spring to autumn changes in the arbuscular mycorrhizal fungal community composition in the different propagule types associated to a Mediterranean forest. Plant Soil 408:107–120CrossRefGoogle Scholar
  44. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  • Patricia Silva-Flores
    • 1
    • 2
    Email author
  • C. Guillermo Bueno
    • 3
  • José Neira
    • 1
    • 4
  • Götz Palfner
    • 2
  1. 1.Centro de Estudios Avanzados en FruticulturaRengoChile
  2. 2.Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  3. 3.Department of Botany, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  4. 4.Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias AgronómicasUniversidad de ChileSantiagoChile

Personalised recommendations