Advertisement

Insect resistance in Rice (Oryza sativa L.): overview on current breeding interventions

  • Gurpreet Singh MakkarEmail author
  • Dharminder Bhatia
  • K.S. Suri
  • Simranjeet Kaur
Mini-Review
  • 3 Downloads

Abstract

Breeding for insect resistant varieties has been central to the integrated pest management as it offers an ecologically viable approach agianst biotic constraints. Considerable progress has been made in the past to incorporate resistance to insect pests of rice using conventional breeding approaches. However the diversity in insect pest population, continuous selection of virulent biotypes, lack of resistance sources in cultivated rice (Oryza sativa and O. glaberrima) gene pool, want of efficient insect rearing and varietal screening protocols and inherently complex genetics of resistance further necessitates supplementation of conventional breeding techniques with advanced molecular approaches. Hence, alternative approaches like wide hybridization to introgress resistance from other species of Oryza, transgenic approach to deploy Bt cry, snowdrop lectin and other plant derived genes are being actively pursued. The increasingly identified, mapped, cloned and characterized quantitative trait loci and genes related to insect resistance traits in rice have provided a solid foundation for direct selection and varietal improvement through molecular breeding. Utilization of DNA-based markers provided additional impetus to efficiency and precision of conventional plant breeding via marker-assisted selection to successfully introgress several genes for resistance to insect pests of rice. RNA interference technology has offered another reliable tool in meeting the challenges imposed by crop insects by targeting the enzymes/proteins integral to various biological processes of crop insects. This review briefly discusses the current progress and future prospects in molecular breeding for enhanced varietal tolerance to insect pests of rice.

Keywords

Rice Resistance Tolerance Molecular breeding approaches Planthoppers Leaffolder Stem borers 

Notes

Acknowledgements

The authors are thankful to the Head, Department of Plant Breeding and Genetics and the Department of Entomology, Punjab Agricultural University, Ludhiana for providing the necessary facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adang MJ (2013) Insect aminopeptidases N. In: Rawlings ND, Salvesen GS (eds) Handbook of proteolytic enzymes, 3rd edn. Academic Press, Elsevier Ltd., pp 405–409.  https://doi.org/10.1016/B978-0-12-382219-2.00081-8
  2. Alfonso-Rubi J, Ortego F, Castañera P, Carbonero P, Dıaz I (2003) Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res 12:23–31CrossRefGoogle Scholar
  3. Angeles ER, Khush GS, Heinrichs EA (1981) New genes for resistance to white backed planthopper in rice. Crop Sci 21:47–50CrossRefGoogle Scholar
  4. Ansari M, Moraiet M, Ahmad S (2014) Insecticides: impact on the environment and human health. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health. Springer, Dordrecht, pp 99–123.  https://doi.org/10.1007/978-94-007-7890-0_6 CrossRefGoogle Scholar
  5. Bandong JP, Litsinger JA (2005) Rice crop stage susceptibility to the rice yellow stemborer Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Int J Pest Manag 51:37–43Google Scholar
  6. Baum JA, Roberts JK (2014) Progress towards RNAi-mediated insect pest management. Adv Insect Physiol:249–295.  https://doi.org/10.1016/b978-0-12-800197-4.00005-1
  7. Bentur JS (2006) Host plant resistance to insects as a core of rice IPM. Science, technology and trade for peace and prosperity (IRRI, ICAR). McMillan India Ltd; p. 419-435Google Scholar
  8. Bharathi Y, Kumar V, Pasalub IC, Balachandranb SM, Reddya VD, Rao KV (2011) Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J Biotechnol 152:63–71CrossRefGoogle Scholar
  9. Bhutani S, Kumar R, Chauhan R, Singh R, Chowdhury VK, Chowdhury JB, Jain RK (2006) Development of transgenic indica rice plants containing potato proteinase inhibitor 2 gene with improved defense against yellow stem borer. Physiol Mol Biol Plants 12(1):43–52Google Scholar
  10. Brar DS, Khush GS (2007) Breeding rice for resistance to biotic stresses: conventional and molecular approaches. SABRAO J 45:225–234Google Scholar
  11. Carriger JF, Rand GM, Gardinali PR, Perry WB, Tompkins MS, Fernandez AM (2006) Pesticides of potential ecological concern in sediment from South Florida canals: an ecological risk prioritization for aquatic arthropods. Soil Sediment Contam 15:21–45CrossRefGoogle Scholar
  12. Chandrasekhar K, Vijayalakshmi M, Vani K, Kaul T, Reddy MK (2014) Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens. Biotechnol Lett 36:1059–1067CrossRefGoogle Scholar
  13. Charles JF, Nielsen-LeRoux C, Delecluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472CrossRefGoogle Scholar
  14. Chen J, Huang DR, Wang L, Liu GJ, Zhuang JY (2010a) Identification of quantitative trait loci for resistance to whitebacked planthopper, Sogatella furcifera, from an interspecific cross Oryza sativa × O. rufipogon. Breed Sci 60 (2):153–159Google Scholar
  15. Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W (2010b) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19(6):777–786Google Scholar
  16. Chen M, Shelton A, Ye G (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101CrossRefGoogle Scholar
  17. Chen H, Stout MJ, Qian Q, Chen F (2012) Genetic, molecular and genomic basis of rice defense against insects. Crit Rev Plant Sci 31:74–91CrossRefGoogle Scholar
  18. Clement SL, Quisenberry SS (eds) (1999) Global plant genetic resources for insect resistant crops. CRC Press, Boca Raton, p 295Google Scholar
  19. Cohen MB, Chen M, Bentur JS, Heong KL, Ye GY (2008) Bt rice in Asia: potential benefits, impact, and sustainability. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect resistant genetically modified crops within IPM programs. Springer Science + Business Media B.V., Dordrecht, pp 223–248CrossRefGoogle Scholar
  20. Deka S, Barthakur S (2010) Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv 28:70–81CrossRefGoogle Scholar
  21. Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7Google Scholar
  22. Duan X, Li X, Xue Q, Saad MA, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498CrossRefGoogle Scholar
  23. Dutta SS, Das S, Pale G, Iangrai B, Aochen C, Rai M, Pattanayak A (2016) Current status and future prospects of research on genetically modified rice: a review. Agric Rev 37(1):10–18Google Scholar
  24. Fan D, Liu Y, Zhang H, He J, Huang F, Huang S, Wu B, Liu D, Wen P, Liu L, Jiang L, Cheng X, Wan J (2018) Identification and fine mapping of qWBPH11 conferring resistance to whitebacked planthopper (Sogatella furciferaHorváth) in rice (Oryza sativa L.). Mol Breed 38:96CrossRefGoogle Scholar
  25. Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper Nephotettix virescens and brown planthopper Nilaparvata lugens in transgenic rice expressing snowdrop lectin Galanthus nivalis agglutinin. J Insect Physiol 46:573–583CrossRefGoogle Scholar
  26. Fujita D, Kohli A, Horgan F (2013) Rice resistance to hoppers and leafhoppers. Crit Rev Plant Sci 32(3):162–191.  https://doi.org/10.1080/07352689.2012.735986 CrossRefGoogle Scholar
  27. Garrood WT, Zimmer CT, Gorman KJ, Nauen R, Bassa C, Davies TGE (2016) Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper, Nilaparvata lugens collected from a cross South and East Asia. Pest Manag Sci 72:140–149CrossRefGoogle Scholar
  28. Geethanjali S, Kadirvel P, Gunathilagaraj K, Maheswaran M (2009) Detection of quantitative trait loci (QTL) associated with resistance to whitebacked planthopper, Sogatella furcifera in rice (Oryza sativa L.). Plant Breed 128:130–136CrossRefGoogle Scholar
  29. Gill SS, Cowles EA, Pietrantonio FV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636CrossRefGoogle Scholar
  30. Han L, Wu K, Peng Y, Wang F, Guo Y (2006) Evaluation of transgenic Rice expressing Cry1Ac and CpTI against Chilo suppressalis and Intrapopulation variation in susceptibility to Cry1Ac. Environ Entomol 35(5):1453–1459CrossRefGoogle Scholar
  31. Han L, Wu K, Peng Y, Wang F, Guo Y (2007) Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenee). J Invertebr Pathol 96:71–79CrossRefGoogle Scholar
  32. Han L, Liu P, Wu K, Peng Y, Wang F (2008) Population dynamics of Sesamia inferens on transgenic Rice expressing Cry1Ac and CpTI in Southern China. Environ Entomol 37(5):1361–1370CrossRefGoogle Scholar
  33. Hernandez JE, Khush GS (1981) Genetics of resistance to white backed planthopper in some rice (Oryza sativa L.) varieties. Oryza 18:44–50Google Scholar
  34. Hossain MA (2005) Development of transgenic crop plant expressing entomocidal gene. Ph.D. thesis. Calcutta University, CalcuttaGoogle Scholar
  35. Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006) Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Sci 46:2022–2032CrossRefGoogle Scholar
  36. Hu J, Xiao C, He Y (2016) Recent progress on genetics and molecular breeding of brown planthopper resistance in rice. Rice 9:30.  https://doi.org/10.1186/s12284-016-0099-0 CrossRefGoogle Scholar
  37. Jena KK, Khush GS (1990) Introgression of genes from Oryza officinalis well exWatt to cultivated rice, O. sativa L. Theor Appl Genet 80:737–745.  https://doi.org/10.1007/BF00224186 CrossRefGoogle Scholar
  38. Jena KK, Kim SM (2010) Current status of brown planthopper (BPH) resistance and genetics. Rice 3(2–3):161–171CrossRefGoogle Scholar
  39. Khan ZR, Barrion AT, Litsinger JA, Castilla NP, Joshi RC (1988) A bibliography of rice leaffolders (Lepidoptera: Pyralidae). Insect Sci Appl 9:129–174Google Scholar
  40. Khush GS (1977) Breeding for resistance in rice. Ann N Y Acad Sci 287:296–308CrossRefGoogle Scholar
  41. Kola VSR, Renuka P, Madhav MS, Mangrauthia SK (2015) Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 6:119.  https://doi.org/10.3389/fphys.2015.00119
  42. Kola VSR, Renuka P, Padmakumari AP, Mangrauthia SK, Balachandran SM, Babu VR, Madhav MS (2016) Silencing of CYP6 and APN genes affects the growth and development of rice yellow stem borer, Scirpophaga incertulas. Front Physiol 7:20CrossRefGoogle Scholar
  43. Krishnaiah NV, Lakshmi VJ, Pasalu IC (2006) Status of neonicotinoid insecticide resistance in rice planthoppers - a review. Agric Rev 27:298–302Google Scholar
  44. Kumar R, Bhutani S, Singh R, Chauhan R, Chowdhury VK, Jain RK (2009) Enhanced resistance against the rice leaf folder (Cnaphalocrocis medinalis) in transgenic rice plants containing the potato proteinase inhibitor II gene. Entomologia Generalis 32:11–22CrossRefGoogle Scholar
  45. Kushwaha KS (1988) Leaffolder (LF) epidemic in Haryana (India). International Rice Research Notes 13, 16–17Google Scholar
  46. Lakshmi VJ, Krishnaiah NV, Katti G, Pasalu IC, Bhanu KV (2010) Development of insecticide resistance in rice brown planthopper and whitebacked planthopper in Godavari delta of Andhra Pradesh. Indian J Plant Prot 38:35–40Google Scholar
  47. Lee SI, Lee S, Koo JC, Chun HJ, Lim CO, Mun JH, Song YH, Cho MJ (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol Breed 5(1):1–9CrossRefGoogle Scholar
  48. Li XM, Min SK, Xiong ZM, Hu GW (1990) Genetics analysis of resistance to whitebacked planthopper Sogatella furcifera (Horváth) in four rice varieties (Oryza sativa) of Yunnan Province. Chin J Rice Sci 4(3):113–116Google Scholar
  49. Li XM, Zhai HQ, Wan JM, Ma LY, Zhuang JY, Liu GJ, Yang CD (2004) Mapping of a new gene Wbph6(t) resistance to the whitebacked planthopper, Sogatella furcifera, in rice. Rice Sci 11:86–90Google Scholar
  50. Li G, Xu X, Xing H, Zhu H, Fan Q (2005) Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes. Pest Manag Sci 61:390–396CrossRefGoogle Scholar
  51. Li J, Chen Q, Lin Y, Jiang T, Wua G, Huaa H (2011) RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Manag Sci 67:852–859CrossRefGoogle Scholar
  52. Li Y, Hallerman EM, Liu Q, Wu K, Peng Y (2016) The development and status of Bt rice in China. Plant Biotechnol J 14:839–848CrossRefGoogle Scholar
  53. Ling Y, Huang FK, Long LP, Zhong Y, Yin WB, Huang SS, Wu BQ (2011) Studies on the pesticide resistance of Nilaparvata lugens (Stål) in China and Vietnam. China J Appl Entomol 48:1374–1380Google Scholar
  54. Liu S, Ding Z, Zhang C, Yang B, Liu Z (2010) Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 40:666–671CrossRefGoogle Scholar
  55. Makkar GS, Bentur JS (2017) Breeding for stem borer and gall midge resistance in rice. In: Arora A, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer Nature, Singapore, pp 323–352.  https://doi.org/10.1007/978-981-10-6056-4_11 CrossRefGoogle Scholar
  56. Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93CrossRefGoogle Scholar
  57. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, He J, Geadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226CrossRefGoogle Scholar
  58. Matsumura M, Morimura SS (2010) Recent status of insecticide resistance in Asian planthoppers. Jpn Agric Res Q 41:225–230Google Scholar
  59. Matsumura M, Takeuchi H, Satoh M, Sanada-Morimura S, Otuka A, Watanabe T, Van Thanh D (2008) Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in east and south-East Asia. Pest Manag Sci 64:1115–1121CrossRefGoogle Scholar
  60. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349.  https://doi.org/10.1038/nature02873 CrossRefGoogle Scholar
  61. Mickel CE and Standish J (1947) Susceptibility of processed soy flour and soy grits in storage to attack by Tribolium castaneum. University of Minnesota Agricultural Experimental Station Technical Bulletin 178, 1–20Google Scholar
  62. Mochizuki A, Nishizawa Y, Onodera H, Tabei Y, Toki S, Habu Y, Ugaki M, Ohashi Y (1999) Transgenic rice plants expressing a trypsin inhibitor are resistant against rice stem borers, Chilo suppressalis. Entomol Exp Appl 93:173–178CrossRefGoogle Scholar
  63. Mohanpuria P, Sandhu SK, Arora R (2015) RNA interference research: current status and future outlook for utilization in integrated pest management. In: Singh B, Arora R, Gosal SS (eds) Biological and molecular approaches in pest management. Scientific Publishers, New Delhi, pp 52–72Google Scholar
  64. Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Sarma NP, Reddy VD, Rao KV (2004) Transgenic rice plants expressing the snowdrop lectin gene gna exhibit high level of resistance to the white backed planthopper. Theor Appl Genet 109:1399–1405CrossRefGoogle Scholar
  65. Padmarathi G, Ram T, Ramesh K, Kondala Rao Y, Pasalu IC, Viraktamath BC (2007) Genetics of whitebacked planthopper, Sogatellafurcifera(Horváth) resistance in rice. SABRAO J 39:99–105Google Scholar
  66. Padmavathi C, Katti G, Padmakumari AP, Voleti SR, Subba RLV (2013) The effect of leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) injury on the plant physiology and yield loss in rice. J Appl Entomol 137:249–256CrossRefGoogle Scholar
  67. Quilis J, López-García B, Meynard D, Guiderdoni E, Segundo S (2014) Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J 12(3):367–377CrossRefGoogle Scholar
  68. Ramesh S, Nagadhara D, Pasalu I, Padmakumari A, Sarma NP, Reddy VD, Rao KV (2004) Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice. J Biotechnol 111:131–141CrossRefGoogle Scholar
  69. Ramesh K, Padmavathi G, Deen R, Pandey MK, Lakshmi VJ, Bentur JS (2014) Whitebacked planthopper Sogatella furcifera (Horva’th) (Homoptera: Delphacidae) resistance in rice variety Sinna Sivappu. Euphytica 200:139–148CrossRefGoogle Scholar
  70. Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Christou P, Bharathi M, Williams S, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snow drop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477CrossRefGoogle Scholar
  71. Rao Y, Dong G, Zeng D, Hu J, Zeng L, Gao Z, Zhang G, Guo L, Qian Q (2010) Genetic analysis of leaffolder resistance in rice. J Genet Genomics 37:325–331CrossRefGoogle Scholar
  72. Rao Y, Li Y, Qian Q (2014) Recent progress on molecular breeding of rice in China. Plant Cell Rep 33:551–564CrossRefGoogle Scholar
  73. Reed BJ, Chandler DS, Sandeman RM (1999) Aminopeptidases as potential targets for the control of the Australian sheep blowfly, Lucilia cuprina. Int J Parasitol 29(6):839–850CrossRefGoogle Scholar
  74. Saha P, Majumder P, Datta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap sucking insect-pests. Planta 223:1329–1343CrossRefGoogle Scholar
  75. Sanchez PLA, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing R (eds) Genetics and genomics of Rice. Springer Science+Business Media, New York, pp 9–25.  https://doi.org/10.1007/978-1-4614-7903-1_2 CrossRefGoogle Scholar
  76. Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect resistant transgenic plants. Trends Biotechnol 16:168–175CrossRefGoogle Scholar
  77. Scott JG (2008) Insect cytochrome P450s: thinking beyond detoxification. In: Liu N (ed) Recent advances in insect physiology, toxicology and molecular biology. Research Signpost, Kerala, India, pp 117–124Google Scholar
  78. Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Crit Rev Plant Sci 23:47–72CrossRefGoogle Scholar
  79. Sharma S, Kooner R, Arora R (2017) Insect pests and crop losses. In: Arora R, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer Nature, Singapore, pp 45–66.  https://doi.org/10.1007/978-981-10-6056-4_2 CrossRefGoogle Scholar
  80. Sidhu GS, Khush GS, Medrano FG (1979) A dominant gene in rice for resistance to white backed planthopper and its relationship to other plant characteristics. Euphytica 28:227–232CrossRefGoogle Scholar
  81. Sidhu N, Basal UK, Shukla KK, Saini RG (2005) Genetics of resistance to white-backed planthopper in five rice stocks. SABRAO J 37:43–49Google Scholar
  82. Slamet LIH, Novalina S, Damayanti D, Sutrisno Christou P, Aswidinoor H (2003) Inheritance of cry1Ab and snowdrop lectin gna genes in transgenic javanica rice progenies and bioassay for resistance to brown plant hopper and yellow stem borer. International Rice Research Institute (IRRI), Los Banos, pp 565–566Google Scholar
  83. Sogawa K (2007) Whitebacked planthopper in Chinese Japonica rice. International Agricultural Research Series No.15. Japan International Research Center for Agricultural Sciences, Tsukuba, p 185 (in Japanese)Google Scholar
  84. Sogawa K (2015) Planthopper outbreaks in different paddy ecosystems in asia: man-made hopper plagues that threatened the green revolution in rice. In: Heong KL, Cheng J, Escalada MM (eds) Rice planthoppers. Springer Dordrecht, pp 33–63.  https://doi.org/10.1007/978-94-017-9535-7_2
  85. Sogawa K, Liu G, Qiang Q (2009) Prevalence of whitebacked hoppers in Chinese hybrid rice and whitebacked planthopper resistance in Chinese japonica rice. In: Heong KL, Hardy B (eds) Planthoppers: New threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Banos, pp 257–280Google Scholar
  86. Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128CrossRefGoogle Scholar
  87. Su J, Wang Z, Zhang K, Tian X, Yin Y, Zhao X, Shen A, Gao CF (2013) Status of insecticide resistance of the whitebacked planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Fla Entomol 96(3):948–956CrossRefGoogle Scholar
  88. Sun X, Wu A, Tang K (2002) Transgenic rice lines with enhanced resistance to the small brown planthopper. Crop Prot 21:511–514CrossRefGoogle Scholar
  89. Suzuki Y, Sogawa K, Seino Y (1996) Ovicidal reaction of rice plants against the whitebacked planthopper, Sogatella furcifera Horváth (Homoptera: Delphacidae). Appl Entomol Zool 31:111–118CrossRefGoogle Scholar
  90. Tan GX, Wang QM, Ren X et al (2004) Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92:212–217CrossRefGoogle Scholar
  91. Tang K, Hu Q, Sun X, Wan B, Qi H, Lu X (2001) Development of transgenic rice homozygous lines with enhanced resistance to rice brown planthopper. In Vitro Cell Dev Biol Plant 37:334–340CrossRefGoogle Scholar
  92. Tyagi AK, Mohanty A (2000) Rice transformation for grop improvement and functional genomics. Plant Sci 158:1–18CrossRefGoogle Scholar
  93. Vila L, Quilis J, Meynard D, Breitler JC, Marfa V, Murillo I, Vassal JM, Messeguer J, Guiderdoni E, San Segundo B (2005) Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. Plant Biotechnol J 3:187–202CrossRefGoogle Scholar
  94. Wan JM (2006) Perspectives of molecular design breeding in crops. Acta Agron Sin 32(3):455–462Google Scholar
  95. Wan P, Jia S, Li N, Fan J, Li G (2014) RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus. PLoS One 9(1):e86675CrossRefGoogle Scholar
  96. Wang P, Zhang X, Zhang J (2005) Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35:611–620CrossRefGoogle Scholar
  97. Wang Y, Chen J, Zhu YC, Ma C, Huang Y, Shen J (2008a) Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Manag Sci 64:1278–1284Google Scholar
  98. Wang YH, Gao CF, Zhu YC, Chen J, Li WH, Zhuang YL, Dai DJ, Zhou WJ, Yong C, Shen JL (2008b) Imidacloprid susceptibility survey and selection risk assessment in field populations of Nilaparvata lugens (Homoptera: Delphacidae). J Econ Entomol 101:515–522CrossRefGoogle Scholar
  99. Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX (2012) Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol 42:637–646CrossRefGoogle Scholar
  100. Wei JW, Xu XP, Chen JT, Zhang LY, Fan YL, Li BJ (2000) Research on improving rice resistance to the pest by Bt and SBTi genes. Sheng Wu Gong Cheng Xue Bao 16(5):603–608Google Scholar
  101. Wu CF, Khush GS (1985) A new dominant gene for resistance to whitebacked planthopper in rice. Crop Sci 25:505–509CrossRefGoogle Scholar
  102. Wu C, Zhao R, Fan Y, Zhang C, Oliva N, Cohen M et al (1997) Transgenic rice plants resistant to yellow stem borer. Rice Biotechnol 9:7Google Scholar
  103. Wu SF, Zeng B, Zheng C, Mu XC, Zhang Y, Hu J, Zhang S, Gao CF, Shen JL (2018) The evolution insecticide resistance in BPH (Nilaparvata lugens Stal ) of China in the period 2012-2016. Sci Rep 8:4586CrossRefGoogle Scholar
  104. Yamasaki M, Tsunematu H, Yoshimura A, Iwata N, Yasui H (1999) Quantitative trait locus mapping of ovicidal response in rice Oryza sativa L. against the whitebacked planthopper, Sogatella furcifera (Horváth). Crop Sci 39:1178–1183CrossRefGoogle Scholar
  105. Yamasaki M, Yoshimura A, Yasui H (2003) Genetic basis of ovicidal response to whitebacked planthopper Sogatella furcifera (Horváth) in rice (Oryza sativa L.). Mol Breed 12:133–143CrossRefGoogle Scholar
  106. Yang YL, Xu J, Leng YJ, Xiong G, Hu J, Zhang G, Huang L, Wang L, Guo L, Li J, Chen F, Qian Q, Zeng D (2014) Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horváth) in rice (Oryza sativa L.). BMC Plant Biol 14Google Scholar
  107. Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR (2008) Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biol 8:102CrossRefGoogle Scholar
  108. Yoshimura S, Komatsu M, Kaku K, Hori M, Ogawa T, Muramoto K, Kazama T, Ito Y, Toriyama K (2012) Production of transgenic rice plants expressing Dioscorea batatas tuber lectin 1 to confer resistance against brown planthopper plant. Biotechnology 29:501–504Google Scholar
  109. Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W (2014) The insect ecdysone receptor is a good potential target for RNAi based pest control. Int J Biol Sci 10(10):1171–1180CrossRefGoogle Scholar
  110. Yuan SY, Li GQ, Wan PJ, Fu Q, Lai FX, Mu LL (2017) Knockdown of a putative argininosuccinate lyase gene reduces arginine content and impairs nymphal development in Nilaparvata lugens. Insect Biochem Physiol 95(1):e21385CrossRefGoogle Scholar
  111. Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC (2011) Knockdown of midgut genes by dsRNA- transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6:e20504CrossRefGoogle Scholar
  112. Zhang X, Liao X, Mao K, Zhang K, Wan H, Li J (2016) Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012–2014. Pestic Biochem Physiol 132:13–20CrossRefGoogle Scholar
  113. Zhang L, Qiu LY, Yang HL, Wang HJ, Zhou M, Wang SG, Tang B (2017) Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper, Nilaparvata lugens, by knockdown of TRE gene. Front Physiol 8:750CrossRefGoogle Scholar
  114. Zheng X, Ren X, Su J (2011) Insecticide susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in China. J Econ Entomol 104:653–658CrossRefGoogle Scholar
  115. Zhou XJ, Ma CX, Li M, Sheng CF, Liu HX, Qiu XH (2010) CYP9A12 and CYP9A17 in the cotton bollworm, Helicoverpa armigera: sequence similarity, expression profile and xenobiotic response. Pest Manag Sci 66:65–73CrossRefGoogle Scholar

Copyright information

© African Association of Insect Scientists 2019

Authors and Affiliations

  1. 1.Department of Plant Breeding & GeneticsPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations