Susceptibility of Anticarsia gemmatalis, Helicoverpa zea, Chrysodeixis includens, Spodoptera exigua, and Spodoptera frugiperda to a mexican isolate of nuclear polyhedrosis virus from Anticarsia gemmatalis

  • Antonio P. Terán-Vargas
  • Paulina Vega-Aquino
  • Jorge Zambrano-Gutiérrez
  • Haidel Vargas-Madríz
  • Ausencio Azuara-DomínguezEmail author
Short Communication


The goal of this study was to document the susceptibility of Anticarsia gemmatalis Hübner, Helicoverpa zea Boddie, Chrysodeixis includens Walker, Spodoptera exigua Hübner, and Spodoptera frugiperda J.E. Smith to a field-collected isolate of nuclear polyhedrosis virus from Anticarsia gemmatalis (AgNPV). Eight concentrations of AgNPV were individually provided in an artificial diet, and larvae of each species could feed on each virus concentration for 15 days, which allowed us to calculate the Median Lethal Concentration (LC50) of the virus for each insect species. The larvae of S. frugiperda were not susceptible to the virus, whereas the LC50 for A. gemmatalis, C. includens, S. exigua, and H. zea were 0.5 × 103, 0.20 × 108, 2.68 × 108, and 8.3 × 108 inclusion bodies/mL, respectively.


Velvetbean caterpillar Soybean Pathogenicity Virulence 



We thank CONACYT, INIFAP-sur de Tamaulipas, and Foundation Produce of the State of Tamaulipas for funding this project.


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Ávila V.J., Rodríguez del Bosque L.A. (2003) Uso del nucleopoliedrovirus de Anticarsia gemmatalis como principal estrategia del MIP en soya de la región sur de Tamaulipas, pp. 327-330 In Memorias del XXVI Congreso Nacional de Control Biológico. Sociedad Mexicana de Control BiológicoGoogle Scholar
  3. Ávila V.J., Rodríguez del Bosque L.A. (2004) Control biológico del gusano terciopelo con el nucleopoliedrovirus de Anticarsia gemmatalis en soya. SAGARPA, INIFAP, CIRNE, Campo Experimental Sur de Tamaulipas. Folleto Técnico No. 17. 44 pGoogle Scholar
  4. Ávila-Valdez J, Rodríguez-del-Bosque LA (2008) Gusano terciopelo de la soya, Anticarsia gemmatalis (Lepidoptera: Noctuidae). In: Arredondo-Bernal HC, Rodríguez-del-Bosque LA (eds) Casos de Control Biológico en México. Mundi Prensa, México City, pp 89–100Google Scholar
  5. Carter JB (1984) Viruses and pest-control agents. Biotechnol Genet Eng Rev 1:375–419CrossRefGoogle Scholar
  6. Danyluk GM, Maruniak JE (1987) In vivo and in vitro host range of Autographa californica nuclear polyhedrosis virus and Spodoptera frugiperda nuclear polyhedrosis virus. J Invertebr Pathol 50:207–212CrossRefGoogle Scholar
  7. de Castro Oliveira JV, Wolff JLC, Garcia-Maruniak A, Ribeiro BM, de Castro MEB, de Souza ML, de Andrade Zanotto PM (2006) Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus. J Gen Virol 87:3233–3250CrossRefGoogle Scholar
  8. Del-Angel C, Lasa R, Rodríguez-del-Bosque LA, Mercado G, Beperet I, Caballero P, Williams T (2018) Anticarsia gemmatalis Nucleopolyhedrovirus from soybean crops in Tamaulipas, Mexico: diversity and insecticidal characteristics of individual variants and their co-occluded mixtures. Fla Entomol 101:404–410CrossRefGoogle Scholar
  9. Haase S, Sciocco-Cap A, Romanowski V (2015) Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 7:2230–2267CrossRefGoogle Scholar
  10. Hayakawa TE, Shimojo E, Mori M, Kaido M, Furusawa I, Miyata S, Sano Y, Matsumoto T, Hashimoto Y, Granados RR (2000) Enhancement of Baculovirus infection in Spodoptera exigua (Lepidoptera: Noctuidae) larvae with Autographa califórnica nucleopolyhedro virus of Nicotina tabacum engineered with a granilo virus enhancing gene. J Appl Entomol Zool 35:63–170CrossRefGoogle Scholar
  11. Morales L, Moscardi F, Sosa-Gómez DR, Paro FE, Soldorio IL (2001) Fluorescent brighteners improve Anticarsia gemmatalis (Lepidoptera: Noctuidae) nucleopolyhedrovirus (AgMNPV) activity on AgMNPV susceptible and resistant strains of the insect. Biol Control 20:247–253CrossRefGoogle Scholar
  12. Moscardi F, Coroso IC (1981) Acao de Baculovirus anticarsia sobre lagarta de soja (Anticarsia gemmatalis, Hübner) e outros Lepidópteros. In: Anais do Seminario Nacional de Pesquisa da Soja. 2. EMBRAPA-CNPSO, Londrina, pp 52–61Google Scholar
  13. Moscardi F, Sosa-Gomez D R (1992) Use of viruses against soybean caterpillars in Brazil. In: L. G. Copping, M. B. Green, and R. T. Rees (eds.), pp. 98-109. Pest management in soybean. Elsevier, LondonGoogle Scholar
  14. Moscardi F, de Souza ML, de Castro MEB, Moscardi ML, Szewczyk B (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Pichtel J, Ahmad F (eds) Microbes and microbial technology. Springer, New York, pp 415–445CrossRefGoogle Scholar
  15. SAS INSTITUTE (2002) SAS User’s Guide. Version 9.0. SAS Institute, Cary, North Carolina, USAGoogle Scholar
  16. Williams T, Arredondo-Bernal HC, Rodríguez-del-Bosque LA (2013) Biological Pest Control in Mexico. Annu Rev Entomol 58:119–140Google Scholar

Copyright information

© African Association of Insect Scientists 2019

Authors and Affiliations

  • Antonio P. Terán-Vargas
    • 1
  • Paulina Vega-Aquino
    • 1
  • Jorge Zambrano-Gutiérrez
    • 2
  • Haidel Vargas-Madríz
    • 2
  • Ausencio Azuara-Domínguez
    • 3
    Email author
  1. 1.INIFAP, Campo Experimental Las HuastecasCiudad CuauhtémocMexico
  2. 2.Colegio de PostgraduadosMontecilloMéxico
  3. 3.Tecnológico Nacional de México/I. T. de Cd. VictoriaCiudad VictoriaMexico

Personalised recommendations