Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conformational detection of heat shock protein through bio-interactions with microstructures

  • 15 Accesses



The molecular mechanical interaction between the heat shock protein 90 (HSP90) and the adenosine triphosphate (ATP) molecules is detected by employing a polyvinyl-di-chlorofluoride (PVDF) aluminum-coated microcantilever beams, considered as a mechanical transducer.


Here the chaperone protein called HSP90 performs the interaction. The microcantilever beam will sense the molecular mechanical interaction between the HSP90 and ATP molecules. This protein forms a complex molecule with ATP, and because of this molecular interaction, the beam will deflect which is measured using the optical lever method.


This optical technique is able to detect the biomechanical interaction of ATP and HSP90 at various concentrations. The response time and sensitivity of this technique are found to be superior to similar methods such as piezoresistive technology known to be used for studying biomolecules interaction.


This work will enable the reader to understand the behavior of micro-electro-mechanical systems (MEMS) based microcantilever structure under the influence of different concentrations of HSP90. The work provides a methodological approach to develop point-of-care devices for the detection of biomolecules.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Ahmed S, Lubna A, Bisma B, Samiya A, Vipan K. Investigation on applicability and suitability of microcantilever based biosensors for DNA detection. Adv Biotechnol Microbiol. 2017. https://doi.org/10.19080/AIBM.2017.02.555593.

  2. Arntz Y, Seelig JD, Lang H, Zhang J, Hunziker P, Ramseyer J, et al. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology. 2002;14(1):86. https://doi.org/10.1088/0957-4484/14/1/319.

  3. Bausells J. Piezoresistive cantilevers for nanomechanical sensing. Microelectron Eng. 2015;145:9–20. https://doi.org/10.1016/j.mee.2015.02.010.

  4. Biebl MM, Buchner J. Structure, function, and regulation of the HSP90 machinery. Cold Spring Harb Perspect Biol. 2019:a034017. https://doi.org/10.1101/cshperspect.a034017.

  5. Dukic M, Adams J, Fantner G. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Sci Rep. 2015;5:16393. https://doi.org/10.1038/srep16393.

  6. Eng C, Vijg J. Genetic testing: the problems and the promise. Nat Biotechnol. 1997;15(5):422–6. https://doi.org/10.1038/nbt0597-422.

  7. Eslami S, Jalili N. A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces. Ultramicroscopy. 2012;117:31–45. https://doi.org/10.1016/j.ultramic.2012.03.016.

  8. Fritz J, Baller M, Lang H, Rothuizen H, Vettiger P, Meyer E, et al. Translating biomolecular recognition into nanomechanics. Science. 2000;288(5464):316–8. https://doi.org/10.1126/science.288.5464.316.

  9. Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Ann Rev Cell Biol. 1993;9(1):601–34. https://doi.org/10.1146/annurev.cb.09.110193.003125.

  10. Goetz MP, Toft D, Ames M, Erlichman C. The HSP90 chaperone complex as a novel target for cancer therapy. Ann Oncol. 2003;14(8):1169–76. https://doi.org/10.1093/annonc/mdg316.

  11. Grogan C, Raiteri R, O'Connor G, Glynn T, Cunningham V, Kane M, et al. Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. Biosens Bioelectron. 2002;17(3):201–7. https://doi.org/10.1016/S0956-5663(01)00276-7.

  12. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295(5561):1852–8. https://doi.org/10.1126/science.1068408.

  13. Higgins MJ, Proksch R, Sader JE, Polcik M, Endoo S, Cleveland JP, et al. Noninvasive determination of optical lever sensitivity in atomic force microscopy. Rev Sci Instrum. 2006;77(1):013701. https://doi.org/10.1063/1.2162455.

  14. Jain A and Alam M.A. Emerging ideas in nanocantilever based biological sensors. arXiv preprint arXiv. 2013;1305.5729.

  15. Jeetender A, Stiharu I, Packirisamy M, editors. Micro-opto mechanical biosensors for enzymatic detection. Photonic Applications in Biosensing and Imaging: International Society for Optics and Photonics; 2005. https://doi.org/10.1117/12.628797.

  16. Jeetender A, Stiharu I, Packirisamy M, Nerguizian V, editors. Behaviour of enzyme molecules under piezo-electric vibrations. Photonics North 2006: International Society for Optics and Photonics; 2006. https://doi.org/10.1117/12.708257.

  17. Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of HSP90 activation. Trends Mol Med. 2004;10(6):283–90. https://doi.org/10.1016/j.molmed.2004.04.006.

  18. Khemthongcharoen N, Wijit W, Assawapong S, Kata J, Adisorn T, Chamras P. Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens Bioelectron. 2015;63:347–53. https://doi.org/10.1016/j.bios.2014.07.068.

  19. Lindquist S, Craig EA. The heat-shock proteins. Ann Rev Genet. 1998;22(1):631–77. https://doi.org/10.1146/annurev.ge.22.120188.003215.

  20. Lo RC. Review: microfluidics technology: future prospects for molecular diagnostics. Advanced Health Care Technologies. 2017;3:3–17. https://doi.org/10.2147/AHCT.S94024.

  21. Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B. Structural and functional analysis of the middle segment of HSP90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell. 2003;11(3):647–58. https://doi.org/10.1016/S1097-2765(03)00065-0.

  22. Moree B, Connell K, Mortensen RB, Liu CT, Benkovic SJ, Salafsky J. Protein conformational changes are detected and resolved site specifically by second-harmonic generation. Biophys J. 2015;109(4):806–15. https://doi.org/10.1016/j.bpj.2015.07.016.

  23. Ndieyira JW, Watari M, Barrera AD, Zhou D, Vögtli M, Batchelor M, et al. Nanomechanical detection of antibiotic–mucopeptide binding in a model for superbug drug resistance. Nat Nanotechnol. 2008;3(11):691–6. https://doi.org/10.1038/nnano.2008.275.

  24. Ndieyira JW, Kappeler N, Logan S, Cooper MA, Abell C, McKendry RA, et al. Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum. Nat Nanotechnol. 2014;9(3):225. https://doi.org/10.1038/nnano.2014.33.

  25. Patkar R, Ashwin M, Vinchurkar M, Adami A, Giacomozzi F, Lorcnzclli L, et al. Microcantilever based dual mode optical biosensor for agricultural pathogen detection. IEEE Sensors. 2018:1–3. https://doi.org/10.1109/ICSENS.2018.8589626.

  26. Raiteri R, Butt H, Grattarola M. Changes in surface stress measured with an atomic force microscope. Scanning Microsc. 1998;12(1):243–51.

  27. Sadabadi H, Packirisamy M. Nano-integrated suspended polymeric microfluidics (SPMF) platform for ultra-sensitive bio-molecular recognition of bovine growth hormones. Sci Rep. 2017;7(1):10969. https://doi.org/10.1038/s41598-017-11300-2.

  28. Salafsky JS. Detection of protein conformational change by optical second-harmonic generation. J Chem Phys. 2006;125(7):074701. https://doi.org/10.1063/1.2218846.

  29. Stiharu I, Rakheja S, Packirisamy M, Jeetender A, editors. MEMS based cardiac bio-enzyme detection for the acute myocardial syndrome recognition. Proceedings of the 9th WSEAS International Conference on Systems: World Scientific and Engineering Academy and Society (WSEAS); 2005.

  30. Wen R. Microfluidic-based point-of-care testing for disease diagnosis. In E3S Web of Conferences. EDP Sciences. 2019;131:01004. https://doi.org/10.1051/e3sconf/201913101004.

  31. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol. 2001;19(9):856–60. https://doi.org/10.1038/nbt0901.

  32. Zhao R, Ying S. Polymeric flexible immunosensor based on piezoresistive micro-cantilever with PEDOT/PSS conductive layer. Sensors. 2018;18(2):451. https://doi.org/10.3390/s18020451.

  33. Zhao R, Delin J, Yongzheng W, Xiaomei Y. Cantilever-based aptasensor for trace level detection of nerve agent simulant in aqueous matrices. Sensors Actuators B Chem. 2017;238:1231–9. https://doi.org/10.1016/j.snb.2016.09.089.

Download references

Author information

Correspondence to Muthukumaran Packirisamy.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amritsar, J., Foroughi, S., Raju, D. et al. Conformational detection of heat shock protein through bio-interactions with microstructures. Res. Biomed. Eng. 36, 89–98 (2020). https://doi.org/10.1007/s42600-019-00038-7

Download citation


  • Molecular diagnosis
  • Micro-electro-mechanical systems (MEMS)
  • Polyvinyl di-chlorofluoride (PVDF) microcantilever beams
  • Point-of-care testing (POCT)
  • Heat shock protein (HSP90)
  • Optical lever method